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Abstract

The ordered integrals for several paths in Kerr gravi-
tation is computed in a compact form. When the path is closed
we discuss its relation with the angular parallel displacement
and calculate the corresponding Wilson loop. The validity of
Mandelstam relations for gauge fields is also explicitly veri

fied.



The Wilson loop [i][é] has arisen considerable attention
in gauge theories Because it is a gauge invariant quantity and it
is thought that it can act as a dynamical variable with its own
evolution equations involving their variational derivatives[i]DJ
D][{]Eﬂ. It should then be an important variable for the quanti
zation of non-abelian gauge theories. If this is the case,it seems
interesting to compute the value of the Wilson Toop(WL)(and rela-
ted strings) for some classical configurations of the gauge fields.
This could also help for an understanding of an ewventual classical
theory based on WL.

In this sense, in a previous paper, we presented some re-
sults of an actual computation[8] of WL for the 1nstanton[i]. It
seems of interest to perform similar calculations for some confi
gurations of the gravitational field. The WL is related to the
parallel displacement of a vector along a closed path, which in
the gravitational case has a space-time geometrical meaning. We
shall perform the computations for the gravitational field corres
ponding to the Kerr-metric[”ﬂ which contains as a particular case
the Schwarzschild metric[}q.

We shall call
U(c) = P ¢ ¥ (1)

where P means ordered product along the curve c, ﬂ; is the tetra

dic connection which, for the Kerr metric is given explicitly by[i{
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(outside the "ergosphere") where

£= r?+g%cos?0 (with the diagonal Lorentz metric n=(1,1,1,1)

(3)
A= r2-2mr + g2 (4)
a is the angular momentum per unit mass
The WL corresponding to a closed curve ¢ will be
W(c) = Tr U(c) (5)

We shall first consider circles with center at the origin

with fixed values of r,6,t. So, in this case

I de” = r d¢ with dr =do=dt=0 (6)

and from (2).
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In particular, for 8= %} the elements of the matrix (7)
are given by
AL/ m
A= - —— 3 B=-—2 (1+ o). (9)

Observe that, for «=0 and r=2m (Schwarzschild radius) we
have F¢:O

From (7) and (9) it is easy to see that

3_ _ 1 _ 2 m - e s .
ra= - —z [é a?(1+ ~F—)é]r¢_ A;F¢(Def1n1t1on of A¢) (10)
This relation implies that
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and, taking the trace for a complete circle
W= Tr e2™los 2(1+cos2rA, ) (12)

note that Ty T2=-2A2
¢ ¢



Let us compute (1) for a curve r(s), 6(s) contained in a meridian

plane, we need

rds = (Tg8+T, T)ds (13)
where, from (2)
0 - _pal/z . a?sin6cosd r
f<] 0) 0 f= 3 8 + - A1/2
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Then

as the matrices commute for different values of s. In particular
we see that for the Schwarzschild metric, due to the spherical

symmetry, the property (15) should hold forvmn/curve contained in

an arbitrary plane through the origin (at least, for a convenient

gauge).
In particular, for a meridian circle, r=0 =1 we obtain
_2ﬂA1/2 0 -1 0
o VYrZ+g? 1 0
2/Tgdb
e =
(16)



From here
W= 2(1+cos2m Ay) (17)
with
Z 4
Ae - /r 2mr+g (]8)
Vre+a’

note that for a=0 A6=A¢’ as it should.

For a radial segment we obtain form (14) with 6=0 r=1
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note that in Schwarzschild case (a=0) we have Fr=0 U=1

For a translation in time

Fudx”= r.dt,with . (from (2)) being

t
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So that
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If we consider a=0 and a closed path formed by two ra-
dial segments (which contribute with a unit factor) and two
temporal segments at radius r; and r, (resp.)the result is:

1. .l_)mr +F'2[?h(—l——- ] )mT"]} (21)
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from which, the WL is:

W= 2[1+Ch< LI —-]-—)m"r] (cf(12) and (17))
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For r 2 r,=r >>m (21) reduces to
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To compute the parallel displacement of a vector Al

(tetradic index) we simply take its product with the U-matrix
A= P A A'=UA (23)

When U corresponds to a closed path, starting and ending at
the point where A is defined, we can take the scalar product
between A' and A, thus defining an "angle" of the parallel

displacement along that path., It is easy to check that U is



unitary in the sense that

b b

A'.A' = A.A. ie A'anabA' = AanabA or, in matrix nota

tion

A'nA = AnA

It is straightforward to show that this implies

nUnU = 1 (24)

where U means the transpose of U.Further, as U=e' it is easy
to see that if
nVn = =V (25)

then (24) is satisfied.
When neither A nor A' has temporal component, one can
define a real angle y by means of the equation

I -1 -
cosy = —AMA _ _AnU_A _ _A(Un)A _ _AnlUA (26)

A.A A.A A.A A.A

From (23) it is straightforward to see (by choosing a

b b

vector A(a) with component A(a)= Ga that

ie, the elements of U are the components of the parallel trans
lated vector, pointing originally in the (a) direction.
From (26) and (27) it follows that, if Aza) is a space

vector, then, the corresponding diagonal element of U 1is the

cosine of the angle between the two vectors.



U%a = cos X, (28)

If we consider a circle in the equator and the index

a=1 then eq(11) gives.

COSYX1 cos 2mA

IXI! |2ﬂA¢+2ﬂnl

As for m>0 we must have x,~0 we choose n=-1 so

|x, | = 2ﬂ|A¢‘]| (29)

From (10) we see that the dominant term for roe is

simply

’ _ 27Tm
. =

>

r (30)

| X

If in (29) we take a=0 we have the angle corresponding

to the Schwarzschild metric
[X°1 = 2m|A (a=0)-1] (31)

Note that for the Schwarzschild radius we have A¢= 0

and Xf = 27,

For "q¢" small, the Kerr metric introduces a correction

which can be computed from (10) with the results

v, = x(S)e2ma2 M (B caa) (32)
' ! ' r3 r



In general, when we come back to the starting point of
the closed curve, the parallel transferred vector and the ori-

ginal one are related by
A' = A+ a (33)

but, as both have the same norm
A' A'= A A+a.0+20.A = A.A

SO

then

A'.A = A.A+a.A= 1- %T g, (A.A=1)

From this and (27), we get for the Wilson loop

1 b
W= d- o a0y, nd (34)

Obviously, W=4 is the "vacuum" (or flat) value for the
Wilson Toop in gravitation, while the diference (4-W) is a mea
sure, as can be seen from (34) of the Minkoskian modulus of
A'-A

As an example, from (12) and (30) (or (17), (18))

W= 4- ( Zim )2 for Poe (35)

We should note, however, that W=4 is a necessary but not
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sufficient condition for the "vacuumf state, (for r=2m,
Schwarzschild radius, W=4) as can be seen from (10) and (12) ,
and the curvature is not zero as is well known. In fact, we
shall see that the curvature is related to the derivatives
of the Wilson loop.

From the expressions for the curvature tensor in

Schwarzschild metric

00 1 0
a m seno 0000
Rig = - 1 0 0 0 (36)
b r2/T=2m/r
0 0 0 0
0 0 0
R: - 2m seng 0 0 1 0
23, T *r 0-1 0 O (37)
0 0 0 0

(a,b, tetradic indices) and the expression (10) for A¢=27 and

"a"=0 one can easily check the relations

27

oW
= = { d4 Tr(Ry5U) = 2r Tr(Ry,U) (38)

(=}

= - J d4 Tr (R,,U) = 2m Tr (Ry4U) (39)

where the left hand side can be directly computed from (12)
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Forms (38), (39) are particular cases of

9X

u
on_ . { ds  Ty(R, U} $& (40)
A%

which can be deduced from the general Mandelstam relati-
on 21 [e]

We can also try to see what happens with the WL inside
the Schwarzschild sphere (for "a"=0). For simplicity we consider
0= %} with this aim we can use Kruskaal coordinates by means
of which we can calculate (8). The resultso obtained is equiva-
lent to the one we get when we take expressions in Schwarschild

solution with the following prescription:

for A, we take

¢
A = -
5 m/r

and for F¢ 00 1 0

0 0 o O

Ly= VIT=20/r T 1 0 o o

0 0 0 O
Recalling that r and t interchange roles inside the
Schwarzschild radius, we note that now 1 is a temporal index,

i -P: when neither a nor

when either "a" or "b" is 1. As a result the

"

while 4 is spacial and as a result T

b is 1 and r®=rP
b "a

U matrix contains hyperbolic functions when for r>2m it contain-
ed natural trigonometric functions then, instead of (11) for

r<2m

)

2
U =1+ —2 sh 27A,-22 (1-ch 27A
¢A2 (b

Ao
¢
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In all previous considerations the U matrices (T matri-
ces)are refered to tetradic coordinates. If one wants to go to

tensor indices it is necessary to use the mixed matrix:

5 1/2
(%) 0 0 0
0 512 0 0
he = | (43)
0 0 (r*’+a*)sing _a_sind
5 /2 5 1
0 0 - a sinze(-—%-)l/2 (é?)v

(andits inverse= hi?

A U matrix transforms as follows
= n® u¥ g | (44)
While the Wilson loop, being a trace of a closed path, it is
invariant:
W=Try =u® =17% (45)

For the I matrices the transformation to tensor indices

acts like a gauge transformation so that the combination

o ~a b o a a
r =
ha ub hB + ha au hB {UB} (46)
is just a Christoffel symbol
Note that the fact that the ordered exponential inte-

grals, which we have examined, are abelian when the I's are re-

ferred to tetradic indices, does not necessarily means that



- 13 -

they are abelian if computed by using the tensor connections

(46).
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