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ABSTRACT

The recent theoretical effort’of the Riode Janeiro/CBPF group
on surface magnetism is tutorially reviewed. Within a *feal
space renormalization group framework, we analyze the in-
fluence of factors such as the number of states per spin
(g-state Potts model), the signs of the coupling censtants
(mixed ferro and antiferromagnetic interactions), the pre-
sence of a second semi-infinite bulk (interface case), the
symmetry Of the interaction {anisotropic Heisenberg model),
and surface and/or bulk dilution (bond quenched modéii. A

variety of interesting physical effects emerges.

Key-words: Surface magnetism; Critical phenomena; Renormali

zation group.
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I INTRODUCTION

During the last decade, surface magnetism has raised con-
siderable interest both because of its-:various applications
(catalysis, corrosion, etc,) and its intrinsic theoretical and
experimental richness. Itinerant as well as lo.c':éli-zed “ions
magnetic systems have been studied. Nevertheless the field can
be considered as being at its initial stage: this is .due to
the real experimental and theoretical difficulties ossociated
with 1it.

Surface magnetic order has been experimentally ‘exhibited on
systems such as Ni,Cr,Go[:l-Bj. On theoretical grounds, the
problem has been treated within different frameworks, namely
Mean Field Approximationlzg-llj, vartous ©Effective = Field
theories ]:12.-15:] , Bethe ApproximationEl-G:l , series onl:lﬂ
_Random Phase Approximation ElS] , Monte Carlo tEChnlquesElg:l,
and Renormalization Group (RG) methods EZG 30] - Several amory
these works {as well as others) have been rewiewed by Binder[:n]
We present here a comprehensive review of the theoretital e&f=
fort[?2-4q1'that has been very recently accomplished on the
subject by the Rio de Janeiro/CBPF group and collaborators.
We shall discuss, within the real space RG framework, the in-
fluence on the surface magnetism criticalityo(phase'.diagrams
and universality classes) of the following factors: (a) the
number of states.pef.spin (gq-state Potts model; Section III);
tb) the signs of the coupling constants (mixed ferro and anti
ferromagnetic interactions; Section IV); (¢) the presence of

a second semi-infinite bulk = (interface. case;:: Section V) ;
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(d) the symmetry of the interaction (anisotropic — Heisenberg
model; Section VI); (e) surface and/or bulk dilution {bond
quenched model; Section VII).. To better understand the in-
fluence of all these factors, we shall first focus a  proto-
type, which we choose to be the gemi-infinite simple . cubic

spin 1/2 Ising ferromagnet with (1,0,0) free surface.

IT PROTOTYPE
The Hamiltonian of.our'prototype is given by

AL oy == L v 1) (1)

with Jij = JS % 0 1if both i and j sites belong to the ((1,0,0)

surface, and Jij =J, >0 otherwise. It is convenieént to .de-

fine A

Jé/UB - 1. |
The phase diagram of this system is known to be as .given

3D E.NFD 3D

in Fig. 1. For T < T ™. JB/kB (with n" 2~ 4.511) we have

the bulk {erromagnetic (BF) phase, where both the bulk and the

KN)

surface are magnetically ordered. For T > Tc

the bulk is
paramagnetic for all values of JS/JB' and the .:same ' happens
with the surface 1f A < A_ (with &_ & 0.5-0.6). But if A>A,
an interesting intermediate surface f§erromagnetic (SF) region
appears where surface magnetic order exists, even L4 bulk
onder s absent. The SF phase emerges for T in the interval
(TiD,Tf(A)) where, because the presence of the bulk ehhan-
2D

ces the correlations between surface spins, Tf(ﬁ) 2 T~ =
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2D 3D

_"— 2.269...); note that Ti(Ac) =T_", . and

n? JS /kB (with n
that necessarily ac < n3D/n2D—1 (this general inequality . im-
plies, for the present model, Ac”<_0.988). For T > TE(A), the
entire system is in the pa&aﬁagneticf(P) phase.

Let us say a few words on the magnetization (M) profile:
1f A << ﬁc(E 23 ﬁc), M monotonbusly increases (decreases) from
Mg (T) (surface magnetization) to MB(T) (bulk ~ magnétization)
while going from the surface to deep in the bulk , and, if
&4 x 3, M(T) presents a flat profile (M almost ~ independent
of the depth). Inhali cases, the bulk asymptotic value MB(T)
is exponentially approached while coming from the surface, It
is essentially this fact which explains why the 'criticélity
asgociated with the SF phase should be the 2D cne (i.e., the
systems behaves as being an = x® x4{indite one):

To illustrate the 50&& different universality classes as-

‘sociated with the present system let us recall the thermal

critical behaviour of M: (i) for all values of 4, | L

(2P -m 835 (i1) for 4 < A oo Mg _(T'in. T)Bl j 1iii) for A =
ﬁc (SB multieritical po&ut), g = (T 3D T)B .  (iv) for A =
ac, MS o (T (A) ~T)B . Weuverlfy consequent1y~the existance

of 6au&@different critical exponents B. Finally, in the A -
A, + + 0 limit, we expect T°(4)/13" -1 o a(a/a -1 wnien
defines the c&o&éoua&.criticdl'exponent @ and critical factor
. _

Let us close this Section by adding that we = expect a
§ifth ﬁon trivial singularity.to be present in this problem

3D

for A > ﬁc, namely a s04t singularity in Mg (T) at T=T_" (when

My (T} vanishes): we "are presently working out this point.
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III RG APPROACH: POTTS MODEL

The real space RG approach we shall use along the present
‘paper is illustrated here on the g-state Potts ferromagnet(g=
1l and 2 respectively recover bond percolation and spin 1/2

Ising model). The Hamiltonian is given by

M =-aq ,Z, Jijaai,a. (0, =1,2,...,q,¥1) (2)

with Jij =JE;§0 if both i and j sites belong t¢ the free sur-

B
The RG recursive relations are obtained by imposing

face, and J.,. = J, >0 otherwise; we introduce X.. =J,./k_T.
1) 1] .i3° B

P/ . g e HP12.. "N/kgT (3)
3, 4; 00N

ﬁwhereafPl‘z andMlz. LN regpectively denote the Hamiltonians
associated with a (renormalized} single bond (2 sitgs) angd a
relatively large two-terminal cluster G (N sites). By imposing
Eq. (3) we preserve all the equilibrium thermodynamical quan-
-tities as it implies the preservation of the partition. func-.
- tion. Naturally we have to impose Eq. (3) twice: . one to
obtain K; = f(KB) (by using the bulk cluster GQ: and one to
cbtain Ké = g"(KS,KB} (by using the surface cluster Gg.
The choice of ' (Gg,G.) determines the particular RG
apprOximation. We have used two different cheoices,
namely very simple clusters of the Migdal-Kadanoff type[:?'z:I
(qualitatively, but not always gquantitatively, reliable as

long as second order phase transitions are .concerned;. .i.e.
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roughly q < 3), and also recently.iﬂtroducedJ:33'4lj -Clusters
;6f a rather sophisticated shape (both qualitatively and qguan-
titatively reliable for q < 3). We shall denote the first chbice

by RGCI) (it uses clusters noted Gﬁl) and G(1>: see Fig. 2 of

3
Ref. [[32]), and the second one by ’e¢?) (it used clusters ég)
~and Géz): gsee Figs. 2 and 3 of Ref.: E33]).

The mathematical operations involved in Eq.. (3) can in
principle be performed through the traditional .(though tedious!’)
inspection of all microscopic spin configurations. But we have
used instead the Bregk-collapse method (BCM)E}2-44J which
very conveniently solves Eq. (3) through simple topological op
erations, In fact clusters such as those involved in'RG(Z)amﬂd
hardly be solved, for arbitraryfregl value of q, were it not
the BCM, as they yield polynomials of several thousands of
terms.. The'knowledgé of.f(KB) and g(KS,KB) closes the pmocedure
as: (i) the RG flow in the (Kﬁ,Ks) space determines the phase
diagram as well as the universality classes, and (ii) the Ja-

. cobian B(Kﬁ,Ké)/a(KB,Ks)fat the relevant fixed points dbtémﬁhes
the values of the correlation length and crossoﬁer critical ex-
ponents . (v's aﬁd . .respéctively)-. . The main results are indicated

- in Figs. 2 and 3. The q_@lculation of the values of the various
critical exponenfs‘ B appearing in the probl-em involves the equa
tions of states, and therefore a further step in complexity: we

are presently working on that.

IV .MIXED FERRO AND ANTIFERROMAGNETIC INTERACTIONS

Within the rg‘l’ framework we have studied C38] the in-
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fluence, on criticality, of both signs for the g-state Potts
coupling constants J, and Jge The situation described in Sec-
tion ILI is herein recovered as the Is > 0 and Je >0 particular
case. The g-evolution of the phase diagram {in both-tB vs. tg
and - T vs. JS/JB 'representations; see: caption of Fig.
2 for definitiqns of tB and-ts) and associated universality
classes is depicted in Fig. 4;.The.we11 known ferro %> antifer
ro isomorphism in the simple cubic spin 1/2 Ising model is
recovered for q = 2 (Figs. 4(c) and (d)}. The phase  diggram
presents, besides the paramagnetic phase (P}, various magnetic
orders, namely the bufk {erromagneiic (BF; simultaneous sur-
‘face ferromagnetic order), the bulk antiferromaanetic {BAF;
simultaneous surface antiferromagnetic_order), the Surgace
{ernomagnetic (SF, the bulk is disordered), the surface anti-
jernomagnedic (SAF; the bulk is disordéred),.the*&imutianaaué
§u¢5aée §ennomagnetic and bulk antifernomagnetic (SF/BAF), amd
the simultancous surface antifertomaghetic and bulh §ertomagnetic
{SAF/BF) oneé, The various critical and multicritical fixed
points determine. the corresponding unlversality classes. In
particular, the RG flow on the SF/BAF-BAF and SAF/BF-BF critical
~ lines suggests first-order phase transitions. Further inspec
tion is needed to clearly establish this possibility.

Note that while ¢ increases, the SAF/BF phase disappears,
then the SAF phase, and finally the SF/BAF and the BAF phases
disappear as well, The disappearance of the SAF phase is
already rigorously established E45:| for tB =0: note however
that the present RG approximation provides the disappearance
at a value of g fower than it should (g =2.25 instead of the

axaottqu value 3} . The q—evolutien of the four multicritical



CBPF-NF-009/86

points (JB #0. or f 0, JS >0 or <0) is depicted in Fig. 5.

Let us finally .address the most interesting phenomenon ex
hibited by this analysis; namely the existence, for g ~ 2, of
ne-entrances in the phase diagram. This is to say, for negative
JS/JB and within the appropriate range (which depends on q),
we have, while increasing T, that the.éukﬁace magnetic @rder
vanishes at a relatively low temperature, and reappears agadin
‘befow but cfese to the 3D critical temperature, and. finally
vanishes again above bui close to the already mentionned. 3D
point. In other words, the bulk order acts, on the .surface
one, somehow similariy_to an uniform external magnetic field
acting on a (highly anisotropic) antiferrbmagnet. Acbordihgly
to the above facts, the surface order parameter shéuld present:
a maximum in the neighbourhood (possibly aboﬁa) ‘of - the 3D
critical temperature: this is precisely what happens in Gdlll
Although we are not aware of any concrete arguments :rélating
Gd to the q-i.2 Potts model, both experimentaixand'fhxneﬂkal
facts are striking enough to suggest that in Gd .compeiifive

44igns might exist between surface and bulk coupling constants.

V INTERFACE MODEL

The free surface case (bulk-surface~vacuum, -with coupling
constants JB'JS and 0 respectively) we have been “discussing
up to now can be generalized into the .intendace case (bulk I~
surface - buik 2, with coupling constants JI’J and J, respec

8 2
tively). Our calculations have been performed, within the
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-approach, for the (1,040) interface between two semi-in-
finite simple cubic lattices assuming ferromagnetic Potts in-
teractions. The RG flow diagram is illustrated, for gq=2, in
Fig. 6; its J,/J; = 1/2 section is .represented, . in the
(Jsti,T)'space, in Fig. 7. We now have nmulticritical Lines
(which include the previous muiticiiticaz-pointé)'which “join
in a high-onder multicditical point (noted equal bulk point),
in the neighbourhood of which a new type of crpssoﬁer- occurs.

J

The parameter A = 3§--1 {(above which surface order is possible
1

‘in the absence of bulk order} monotonously decreases " when ¢

and/o6r J2/J1 increase (see Fig. 8).

vI SYMMETRY OF THE INTERACTION

It is well knowﬁ that the symmetry of the interaction is
a very relevant ingredient of critical phenomena (e.g., it
characterizes the universality clags at a given dimensionality
D). This is particuiarly true for D =2, where the Mermin ~Wagner
“theorem forbiddens the existence df.long range order at any
finite temperature iflthe (short range) interaction is invariant
undezn a cantinuqué group of symmetiy (e.g;,‘ﬂiﬁIQpic Heisenberg.
.and XY models,in.oppositipn-to.the.Ising model, which is re
lated to é.diée&axa group of symmetry). Let us  also “recall
that the. theorem says nothing about the existence of a phasge
transition: indeed, the D =2 XY model presents the well . known
KosterlitZeTHouless phase transition, detectable through the
divergence .of the susceptibility._The Heisenberg model has a

continuous group of symmetry which is £Langen than that of the
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XY model, and consistently presents, at- finite temperatures,
no phase transition at all.

We go now back to the free surface {or even the interface)
problem we. are dealing with. Within the temperature linterval
where the SF phase exists, the magnetiﬁétion ﬁrofile ig ex-
pected, as.already said, to vanish'aiponant{a££y while pene-
trating into the.paramagnetic.bulk (s); Its ériticality- is
-therefore expected to be that of the 2D system, and naturally
all above considerations should hold. It is on these grounds
that it becomes guite interesting the systematic analysis of

the following spin 1/2 anisotropic Heisenberg Hamiltonian:

- - i Y - X YoY
&\?— E 'Jij[(I n..)(er oJ+o )+0@j (3)

<t,j>
where (Jij'nij) equals (Js,ns) 1f both 1 and j sites " belong
to the free sufface, and equals{IJB,nB) otherwise (note that
n.. =1,0 and - respectively correspond to the Ising, isotropic Heisen

1)

- berg and isotropic XY models). The J,J. >0, nB—land 0<ng < lmodels have

B°7S

been .':1115113(:15::.1]:3 j ‘withdn the RG(U approach (the R’:‘.procedure
‘which enables the treatment of gquantum systems like the pres-
ent one is described in Ref. [[46]). The RG flow diagram and
the nsﬁdepepdence of ﬁc are regpectively presented in Figs. 9
and 10(a). The extension to the interface problem (J2 #0 ‘and

J, J ) has been discussed [37] as well: the results are depic-

1
ted in Fig. 10. Ac-monotonpusly increases when Mg andtmrJéﬁJl

"vary from 1 to 0. However it remains 4inite even for Ng
'J2/Jl = 0: this is not in contradiction with the "Mermin—Wagner

theorenm . (or even with the fact that Tc:=0 for the D=2 iso~
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tropic Heisenberg_modell because nB==l, and consequently not
alf the interactions present continuous group: of symmetry.

We are presently calculating E47] the . influence of Mgr - and will
hopefully obtain lim Ac = o, consistently with the D=2

. __Np»ng>0
critical peculiarities.

VII BOND-DILUTE MODEL

Here we consider a different type of extension, _namely
quenched bond-dilution. The Potts ferromagnetic coupling. com-
stants for the interface problem will be assumed to be random

variables with the following probability laws:
Pr(Jij) = (1 -pr)ataija'+pr6(Jij —Jrf (r =5,1,2) (4)

The psspl=pzal particular case recovers the puze model we have
been considerdng in Section V. The phése diagram of this gquite
general system involves hypersurfacesg in a S—dimensional;xmqg
eter space, e;g';_(kBT/Jltqs/J1'J2/Jl’95'91'92)'the study of
which is presently in progress. A few results - within the
RG(l) framework (bulk dilution in the g =2 free surface.prob-
lem [36] . .interface dilution for arbitrary Iq_ E39:|' simultanecus
interface and bulk dilution for arbitrary g =4°), as well as

within the rg¢2)

one (free surface dilution for arbitrary qBB]),
are already available. Some interesting effects are depicted
in Pig. 11 and 12. In. particular we see in Fig. 11, that bulk

dilution might be an excellent experimental manner for making
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appear, at a given value of JS/JB (which is fixed for a given

substance), surfaCQ.magnetism.

VIII CONCLUSION

The influence of several factors on surface magnetism has
been tutorially reviewed. Among those which present interesting
. effects and which might have strong relevance for ._eﬁxnﬁuzmal
Qork, let us select the following ones: (i) ferro-antiferro com
petitioh between surface and bulk.coupling constants; (il) sym
‘metry.6f the surface and bulk interactions; (iii)  bulk dilu-
tion., E#perimental evidence on these and other effects discus

sed here would be extremely welcome and enlightening.
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CAPTION "FPOR FIGURES

Phase diagram of the spin 1/2 Ising ferromagnet 'in
semi~infinite simple cubic lattice with (1,0,0) free
gurface (ptototype model). The paramagnetic (P), bulk
ferromagnetic (BF) and surface ferromagnetic (SF)
phases join at the SB multicfitical point (full-cercle).
The A + « agymptotic Etraight 1ine (dot-dashed) sat
isfies k T/J n??P s/J

ra(?) phase diagram for typical values of g (£ =
[1- e qu:]/]:1+ (’q—_l’)e--qu_-_], r = B,8). (a) 1Ising
model: the RG flow is indicated; B ,®and o respec
tively denote the trivial (fully stable), .critical
(semi-stable) and multicritical (fully unstéble)

fixed points. (b) Bond percolation: p. =1 -e K

T (r=
B,S) according to the Fortuin and Kasteleyn theorem;
the extrapolaﬁion procedure ("horizontal"” stretching
providing, by construction, the best wvalues availa-
ble in the literature for t ) is indicated as well;
note that the semi-infinite bulk makes swrface percola
“tlon possible befow the 2D threshold Py =0.5. ()

Standard kBT/JB vs. A representation.

Fig. 3 ~ g-evolution of A_, A and ¢ (our best'Values[:33J)_

For g =2, compare present A_(0.569) with other avail
able results: Mean Field A.pprc;‘:-:imation[:9"'10:I {MFA;
0.25), Effective Field Theory [[15] (EFT; 0.4232),
Bethe Approximation16J {0:s16), ra(?’ (321 (4.73¢),
series17] (0.6 0.1), Monte car1a %91 (uc,0.50 :
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0.03). For q =2, compare present [ (0641} with
other available results: €-expansion E“] (1, 0,68)
and ncl1%] (O, 0.56 £0.04).

q-evelution of the phase diagram; T Esign(JB)T/Tc,
T, being the bulk Curie tanperétnre. B ,®and o respec-
tively denote trivial, critical and multicritical
fixed points. The dashéd lines are indicatide. g =2
has been indicated with more details as a prototgpe.
q-evolution of Jg/J, (for|3g/T | above |3§/3,| ssur-
face magnetic ordering can occur even in the absence

of-bulk. ordering). For q =2, J%/JB equals 1.736 (com

-pared to the serles resulttnj 1.60, and the Monte

Carlo one [:19] 1.50) and - 2.28 (compared to the series
result E”:I -1.9). For ‘the gsimple cubic lattice, the
present RG cannot be .rétained much above g =3 as the
bulk transitions will become of the first .order.

(2) f1ux diagram; @ , ® and o respectively

q=2 RG
denote fuliy stable (trivial), semistable . {critical
and multicritical) and fully unstable (high%order.-mlticritical)
fixed points. The five possible phases are indicated:

the two single~-bulk ferromagnetic (BFl and BF2) , the

double-bulk ferromagnetic (BFl'z)' the surface ferro
magnetic (SF) and the paramagnetic (P) ones.
rg¢?

g-evolution of the phase-diagram for .:rz/.:r1 =0,5.
(2 .

RG } g-evolution of ﬁc for typical ratios JZ/JI _
(J2/J1‘=-0 and 1 respectively correspond to the {ree

sunface and equal bulks cases.
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(1)

Fig. 9 - RG flux diagram for the free surface anisotropic

Heisenberg on. Ising bulk ferromagnet (tr Ztanh K, r=

B,S); n, = 1 corresponds to the Ising model.

3

Fig. 10~ RGCI) dependence of.Ac on n, and JZ/JI,.for the inter-

8
face anisotropic Heisenberg between two Ising bulks;
Ng = 1 corresponds to the Ising model. (a) ForJIZ/Jl = 0;
(b) for typical wvalues of Ng

Fig. 1I - Free surface Ising rc‘?)

pB-evoLution of the phase
diagram (a) and the localization Jg/JB-of the multi-
critical point (b).

Fig. 12 - Free surface Ising RGCZ)

pg-evolution of the phase
diagram. Note the existence of the SF phase below
the 2D percolation threshold Pg =1/2; it disappears at

pg = 0.415 + 0.003.
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