CBPF-NF-007/81

SELF-DUAL CLUSTER RENORMALIZATION GROUP
APPROACH FOR THE SQUARE LATTICE  ISING
MODEL SPECIFIC HEAT AND  MAGNETIZATION

by
H.0. Martin* and C. Tsallis

* LABORATORIO DE FTSICA TEQRICA
DEPARTAMENTO DE FISICA - U.N.L.P.
C.C.NO67 (1900) La Plata, ARGENTINA

CENTRO BRASILEIRO DE PESQUISAS FISICAS
AV. Wenceslau Braz, 71, fundos - Rio de Janeiro
22290 - R.J. - BRASIL



SELF-DUAL CLUSTER RENORMALIZATION GROUP APPRCACH FOR THE

SQUARE LATTICE ISING MODEL SPECIFIC HEAT AND MAGNETIZATION

*
H.O.Martin

Laboratorio de Fisica Tedrica. Departamento de Fisica. U.N.L.P.
C.C.NQ67 (1900) La Plata, Argentina

and

C.Tsallis

Centro. Brasileiro de Pesquisas Fisicas/CNPg

Av. Wenceslau Braz 71, Rio de Janeiro, Brasil

Abstract:

A simple renormalization group approach based on self-
dual clusters is proposed for two-dimensional nearest-neighbour
% - spin Ising model on the square lattice; it reproduces the
exact critical point. We calculate the internal energy and the
specific heat for vanishing external magnetic field, spontaneous
magnetization and the thermal (YT) and magnetic (yH) critical
exponents. The results obtained from the first four smallest
cluster sizes strongly suggest the convergence towards the exact
values when the cluster sizes increases. Even for the smallest
cluster, where the calculation is very simple, the results are
quite accurate, particularly in the neighbourhood of the critical

point.
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1. Introduction

The possibility of studying the properties of an Ising
model with a real space renormalization group transformation (RGT)
has been extensively investigated (Niemeijer and van Leeuwen
1976, Barber 1977, van Leeuwen 1975 among others). Different
RGT have been used (Nauenberg and Nienhuis 1974, Tjon 1974,
Jayaprakash et al 1978) to calculate the internal energy, the
specific heat and the spontaneous magnetization as functions of

temperature.

The Migdal-Kadanoff approximate recursion relaticns for
the nearest-neighbour square lattice in the particular limit of
scale parameber b » 1 preserve the duality symmetry of the
model; therefore the internal energy and the specific heat with
the exact critical point can be obtnained (Jayaprakash et al 1978,
see the curve with p = 1.0 of Fig. 7 therein). Recently RGT
based on self-dual clusters have been used to obtain the criti-
cal frontier of the bond-mixed model (Yeomans and Stinchcombe
1979, 1980, Tsallis and Levy 1980, Levy et al 1980, Curado et al
1981). Once more due to self-duality, the ezact critical point

is obtained for the pure Ising model.

The main purpose of the present work is to construct a
simple RGT based on self-dual clusters, that allows quite accu-
rate calculations of the thermal bahaviour of the internal ener
gy and the specific heat for vanishing external magnetic field,
and the spontaneous magnetization for the % - spin Ising ferro-

magnet in nearest-neighbour square lattice.

In section 2 we introduce the RGT we shall use, and in
section 3 we present the results obtained for different cluster

sizes. Finally in section 4 we state our conclusions.



2. Calculation Method

2.1 Brief review of the formalism

et us start from the dimensionless hamiltonian of an

Ising-like spin system

'S%(S) = K _2_ §;8. + H Z S, + .er
<i,j> i

where Si = * 1 1is the spin variable related to the i-th site
of the lattice; <i,j> runs over all first neighbouring sites;
K, H ... are the usual dimensionless coupling constants defined
as K = J/kBT; H=1Jh/kBT in terms of the exchange energy J, the
magnetic field h, the magneton p and the temperature T. Through a given
RGR we obtain the renormalized hamiltonian S&(s')

where all the quantities that are labelled with primes are
associated to the renormalized lattice, which is isomorphic to
the original one scaled by a factor b. Furthermore the origin
of energies is also renormalized, i.e. a new term added to
jﬂQ'(S') appears; we shall refer to it as the G-constant though
it depends in the fact on the the initial dimensionless cou-

pling constants. Furthermore the partition functions satisfy:

y exp[ﬁ%(S)] = 3 exp[G +'£@'(S')] ’
{s} {s'}

where the sum runs over all spin configurations. If we note F
and F' the dimensionless free energies of the system, before

and after renormalization, we obtain:

F=G+F'. (1)



Let us note N and N' the number lattice sites respectively
before and after renormalization (N/N' = bd, d being the dimen-
sionality of the lattice). Then in the thermodynamic 1limit we
have that F = Nf(X,H,...) and that F' = N'f(K',H',...), where
f 1is the free energy per site. By introducing the definition
G = Ng, we can rewrite relation (1) as follows:

f(K,H,...) = g(K,H,...) + p~d

f(K',H',...) . (1")

This basic relation will be used later to obtain the internal
energy, the specific heat and the spontaneous magnetization as
functions of temperature. Let us also remark that up to this
point no particular choice has been assumed for the RGT, which
can be obtained by cumulant expansions, decimation on the whole
lattice or decimation on finite clusters (which can be either
of the standard type, i.e. subsets of the real lattice, or of
the type used herein, i.e. cells which somehow simulate basic

symmetries of the real lattice).

2.2 Self-dual cluster renormalization group approach
a) Internal energy and specific heat
For the nearest-neighbour % - spin Ising model we

have (in the absence of any magnetic field):

f‘@(s)=K Yy s.s. , (2)

<i,j>

If we exclude the appearance of new coupling constants, the

renormalized hamiltonian will be given by

f»@(s') =K' ) S.4yS., - (3)

<i',3'>

Let us now use the decimation method for self-dual clusters to

obtain, for the square lattice, K'(K) (see for example Yeomans



and Stinchcombe 1979, 1980, Levy et al 1980, Tsallis and Levy
1980, Curado et al 1981) and Ké(K). For example, for b = 2 ,

we obtain the following relation:

1 4 — +
exp(KO + K UAUB) 2 exp K[qul + HAO2 + 0102 + UBOl uBOZ)l .
J
{01,02}
(4)

where the My and o; spins are represented in Fig. 1, and the

sum runs over the {Oi} configurations. Therefore

K' = % In (W/R) ,

R
Ko =3 In (W R),
where

W = exp(5K) + 2exp(-K) + exp(-3K) ,

4 cosh K.

)
1l

In other words, by decimating over spins 1 and 2 of the self-
dual cluster of Fig., 1l(a), the renormalized self-dual cluster
of Fig. 1l(b) is obtained. This transformation preserves duality,
therefore, the exact critical point is recovered: K'(K) admits
as an unstable fixed point KC= Kcexact:z % In(vV'2 + 1). The other
fixed points (stable)are K = 0 and K = » , These three fixed

points remains invariable for all b.

In order to close the procedure (which will enable us
to calculate the internal energy and the specific heat) we
need to relate the G-constant to Ké.'Because of extensivity and
since both Ké and G represent that part which does not depend

on spin variables we propose the following relation among them:

G

i

DN K! ,

hence

le}
1l

D Ké s



where D 1is a constant which is related to the fact that the
self-dual cluster sites do not coincide with the lattice sites
and has to be fixed. Therefore our present approximation of

Eg. (1') is
-4d
f(K) = D K(')(K) + b f(K') . (5)

Through successive derivation we obtain:

dK'
af _ p _©° 4, p"ddf a&K' (6)
dxK dK dkK' dK
and
2 a’k: 2 2 2., ]
a“f _ 0 -d |d°f dK' af d"K'
—5 = D 5+ b 5 + —— 5| - (7)
dK dK dK' dk dK' dK
The recursion relations (5), (6) and (7) enable us to numerically

obtain, for both para- and ferro-magnetic phases, the free ener
gy per site, the internal energy per site U = - J(df/dK) and
the specific heat per site C = kB Kz(dzf/dKz), once the constant
D has been determined. It is impostant to remark that all three
Egs. (5), (6) and (7) are invariant through the transformation
D> AD, £ » \f, K-K (hence df/dK - Adf/dK and d°f/dK’> -
kdzf/dkz), i.e. the constant D is nothing but a K-independent
expansion factor of the gquantities f, df/dK and d2f/dK2 (there-
fore the values of the critical exponents do not depend on D).
There are many manners to determine D (all of them are expected
to be equivalent for b » «): we restrict our analysis to three
of them. Let us first consider the fixed point K = o : it 1is

straightforward to obtain

dx' |
dK

= b,

K=o

(particular case of the relation (dK‘/dK)sz = bd—l discussed by

Klein et al 1976) and



= (b-1) (2b-1),

hence (through use of Eg. (6))

(df/dK)K:oo 2
D - -, (8)
b (2b-1) b (2b-1)
where we have used the exact value of (df/dK)Kz:m (easy to

obtain). We can also notice that Egq. (7) is identically sat-

e 2_, 2 2. 2
isfied due to the fact that both d"K'/dK” and d Ko/dK vanish

in the limit K=« (as a matter of fact dzf/dK2 vanishes as

well in this limit because df/dK tends to a constant).

Let us now consider the fixed point K=0: it is

straightforward to obtain that

K!(0) =b(b-1) 1n 2 ,

hence (through use of Eg. (5))

p' = —>FL £ =231, (9)
b™ 1n 2 b
where we have used the exact value of f£(0) (easy to obtain)

and have introduced the notation D' in order to avoid confu-
sion with the previous determination of the constant D. We
can also remark that d4K'/dK and dKé/dK vanish for K =0, there
fore (through Egq. (6)) df/dK vanish as well, which is the
exact result. Let us now describe the third determination
(noted D") of the constant D. If we use, into Eq. (7), the
facts that d4f/dK and d4K'/dK vanish and de'/dK2 is finite
for K=0 together with

a’k! {

= 2b2 - 2b +1 ,

2
dK K=0

we obtain



(dzf/dKz) _ 2
D" = k=0 _ (10)
2 2 ’
2b° - 2b + 1 2b° - 2b + 1

2
where we have used the exact result of (d2f/dK )K==0 (easy to

obtain).

The ratio D'/D and D' /D (obtained from Egs. (8),
(9) and (10)) tend to unity for b+« as expected; furthermore
they monotonically decrease for b increasing (their values
for b=2 respectively are 9/8 and 6/5). It is therefore clear
that the use of one or another determination of D introduces
nothing but small numerical differences in the thermal behav-
iours we are }nterested in, differences which vanish in the
limit b~ « . The results presented in this work (for b=2,3,4
and 5; see section 3) have been obtained through use D given
by Egq. (8). Let us add also that the fixed point K==KC could
have been used to fix D by asking
£ exact

(K.,

f(KC) - C

or

(af/ak), = (af exact aK) .

c c
However this strategy demands the knowledge of the exact solu-
tion of the problem (in this particular case the Onsager (1944)

result) and therefore greatly restricts its applications.

b) Spontaneous magnetization

Let us now add the term H ; Si to hamiltonian (2),
i
and consequently the term H' I Sf, to hamiltonian (3). Equa-
=1

tion (4) generalizes into *

1 ] 1
exp[KO + K UA“B + H (uA + pB)]

b(b-1)
= ) exp|KT + H p, (u,+u,) + H § p.oO. , (11)
{Gi} UAUB A""A "B i21 ii J



with
uA(ol + 02) + uB(al + 02) + 010, if b=2
Ualig b 2b
Ha ) o * U I oo+ ] 0,04 if b> 3
i=1 i=b+1 <i,j>

where the A, B and i-th (for i=1,2,..., b(b-1) sites are illus
trated for b=5 in Fig. 2, and p, and {pi} are topological
weights, The RGT transforms b2 sites of the original lattice into
one site of the renormalized lattice. However at the cluster
level weights must be introduced. In what concerns each one of
the terminal sites (A and B), b different original sites have

been collapsed into one therefore

Furthermore if we consider the whole cluster, the renormalization
. 2 .
proportion b~ into 1 must be preserved, and as the renormalized

cluster has only 2 sites, it must be

b (b-1) 5
'21 p, + 2p, = 2 b, (12)
l:

Let us stress that topologically equivalent sites have the same

weight P; (for example sites 1,5,6 and 10 in Fig. 2).

If we consider the configuration uA=uB=l in Eg. (11)

and differentiate with respect to H, we obtain

- b (b-1)
[ } =p, + 1 i<, (13)
38 | 4 g i=1
with
o. ex KT
{oz} * ° [ ll]
<g.> = J , (13")

2 exp (K I
{Oj} [ ll]



where we have used the fact that Ké and K' are even functions of

H. Furthermore Eqg.(5) generalizes into

£(K,H) =D K' (K,H + b4 fx,H")

and since the dimensionless spontaneous magnetization is given

by m(K)==(df/8H)H:O, we obtain the following recursive relation
— 1
mK) =b < m(K') 35—] , (14)
oH H=0

which, together with Eg. (13) (where a particular choice of {pi}
has to be done), enable us for numerical calculation of the
thermal dependence of the spontaneous magnetization. At the fixed
point K= , <oi> equals unity, therefore the use of relation

(12) into (13) leads to

v
oH' | - b2 . (15)

This equation transforms Eg.(14) into an identity, as it should
be in order to allow a finite non vanishing value for the sponta-
neous magnetization. At the fixed point K=0, <oi> vanishes ,
therefore, through Eq. (13), (BH'/BH)H=
of the weights {pi}.

0 equals b for all choices

Let us now discuss the possible choices for the weight
{pi} (we recall that P,=b) . The simplest possibility (referred

to as criterion (a)) clearly is

where the sum rule (12) has been used. The next simplest possi-
bility (referred to as criterion (b) and different from the
preceding one only for b3 3), namely to introduce two different
weights (noted g and r), enables us for partial consideration of
the topological differences between the cluster sites. We shall

assume



_lo_

p. = Qg if the coordination number of the i-th site

is equals 3,

and

pP. = ¢ if the coordination number of the i-th site

is equals 4,
with the restriction
q/r = 3/4 (ratio of the coordination numbers).

Within this assumption Eg. (12) leads to

r = 2P (b%3) . (16)
2b -1
It is important to remark that, for a given cluster, there are
2(b-1) sites whose weight is g and (b-1) (b-2) sites whose

weight is r. Therefore, in the limit b-+«, the latter dominate,
and as r > 2 (see Eg.(16)), both criteria become equivalent for
all values of K. The results associated to both criteria are pre
sented in the next section; nevertheless it is worth while to

anticipate here that criterion (b) is more performant.

3. Results
a) Internal energy and specific heat
We have made calculations for clusters with b = 2,

3,4 and 5 by using D given by Eg.(8). The computation of the in-
ternal energy, the specific heat and the spontaneous magnetiza-
tion for the cluster with b=5 involves evaluating sums as 1in
Egs. (11) and (13f) over 220 states. We have used a program

which considerably shortens the computing time (Vucetich 1980).
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In Fig. 3 the percentage error of the internal
energy (defined as E = 100 [(df/dK) - (df/aK) 2] /(af/axfah
is shown for b=2,5. This error vanishes in the limit K->«. In

the opposite limit (K=0) it is given by

b - so | &F _ o - _ 100(b-1)
ak? b (2b-1)

=~
il
o

which monotonically vanishes for b >« (this is clearly related to
the fact that the ratio D"/D tends to unity). The behaviour
(with b increasing) of the internal energy at the critical
point is indicated in table 1.

In Fig. 4 the specific heat is shown. As we have
already mentioned, the exact KC value is obtained. In the K-
dominion corresponding to Fig. 4 (0<Kg0.9), the results im-
prove when the cluster size increases. This improvement in Kc
is shown in table 1 (where the critical exponents Yep and a are

indicated as well). Far from Kc, for K;il.O, there appears a

zone where the approximate specific heat takes slightly nega-
tive {unphysical) values. This is shown in Fig. 5(a) (notice
the scale amplification). When we pass from b=2 to b= 3,4 the
curve gets worse. For b=5 the curve begins to improve; this
could indicate that for large clusters the specific heat nega-

tive values would disappear.

To estimate what happens in the limit b->« , we
have made an extrapolation for each value of K with a polyno-
mial of third degree in 1/b using the results obtained for
clusters with b=2,3,4 and 5. In order to analyze the tendency
of the extrapolation, we have also used two polynomials of the
second degree. One of them is adjusted‘for b=2,3 and 4; the
other one is adjusted for b=3,4 and 5. These results are shown
in figure 5(b). We can see that even the case with b=2,3, and
4, improves compared with the cluster with b=5 (the width of
the negative curve decreases). In general the extrapolation

tendencies indicate that the unphysical negative specific heat will
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disappear when b »« (the difficulties encountered here might be
related to the similar ones encountered by Dunfield and Noolandi
1980) .

b) Spontaneous magnetization

We have calculated the spontaneous magnetization
for clusters with b=2,3,4 and 5, within both criteria (a) and
(b). In all cases, if we start the iterative procedure (Eq.(14))
with m(K) # 0 for K<:Kc, we obtain that the magnetization di-
verges in K=0 (T=«), therefore it must be m(K) = 0. For K>KC,

in view of Eq. (15), we obtain a finite spontaneous magnetization.

We verify that for both criteria, the spontaneous
magnetization curve improves when the cluster size increases.
For a given cluster size, the curve obtained with criterion (b)
is better than that obtained with criterion (a). In Fig. 6 we
present the worst curve, which corresponds to b= 2, where both
criteria are one and the same (see Fig. 1(a)), as well as the
best curve obtained, which corresponds tob=5 and criterion (b).
We remark that the difference between these curves is gquite

small.

In table 2, we present the critical exponents yH
and B for different clusters, using criteria {(a) and (b). We
remark that criterion (a) leads to yH values vhich get worse when
b increases, and to B values which get better, whereas crite-
rion (b) leads to a good behaviour for both exponents (this is
not surprising if we remember that the topological differences
between cluster sites are better taken into account within cri-

terion (b) than (a)). One can speculate that the bad behaviour

The percentage errors of the worst (b=5 and cri-
terion (a)) and best (b=5 and criteridn (b)) wvalues for Yy
are respectively -0.41% and -0.15% .One can speculate that
the bad behaviour of Yy within criterion (a) will reverse for
sufficiently large value of b, and that its value will im-
prove (as it happens with the negative specific heat, see Fig.
5(a)). To estimate the results that we should obtain using

large clusters, we have extrapolated Yy (see table 3) in the
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same way we did for negative specific heat. We can sece from
I, II and III extrapolated values that the difference between
both criteria gets smaller (as expected from the consequences

of Eq. (16)).

4. Summary and conclusions

Until now (Yeomans and Stinchcombe 1979, 1980, Tsallis
and Levy 1980, Curado et al 1981) the RGT based on self-dual
cluster have been used to obtain the renormalization nearest-
neighbour coupling K'(K) in the square lattice Ising model.
The exact critical point is obtained and the number of cou-
pling constant does not increase through the transformation.
Within the framework of the present clusters, some constants

(Dl pA
the internal energy U, specific heat C and magnetization. The

and {pi} have to be determined in order to calculate

constant D is determined by imposing the correct departure
(0of U or C for example) either on K=0 or K= ( guantities
easy to calculate, and which by no means demand the knowledge
of exact solutions as the Onsager one in the present case).
In what concerns the constants Pa and‘jpi} they are deter-
mined through simple topological considerations (essentially
that at the cluster 1level, the renormalization proportion b

lattice sites into one lattice site must be preserved).

For b= 2, the present calculation is of great sim-
plicity, due to the fact that sums of the type Egs. (4) and
(13') have only 22 terms. The results are quite satisfatory,
in particular close to the critical point, where they are in
excellent agreement with the exact values. Let us now compare
our results for b =2 with those obtained through other approxi
mations. A simple variational approach to the eigenvalue
problem of the transfer operator has been proposed by Rujan
(1979) . This author obtains the specific heat, the spontaneous
magnetization (both, when K is not very close to K‘aGCt) and
the internal energy curves with high accuracy, butcthe critical

point is not exact (Kc:= 0.413, 0.422 in his first and second
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approximations, respectively; Kcexact = 0.4407), and B is about

0.4 (for both approximations).In our case, B is 0.1486 (Bexact:
0.125), also here the internal energy is very accurate. On the
other hand, the Rujan results of specific heat for KiO.S and
spontaneous magnetization for T/Tcexact < 0.95 are Dbetter than
ours. Jayaprakash et al (1978) have used the Migdal-Kadanoff
approximate recursion relation for randomly bond-dilute in square
Ising model. Although their main interest is to analyze the in-

fluence of dilution, their particular case p=1.0 (see Fig.7 of

their paper) can be compared with the present results. They

obtain the exact critical point, the inverse dimensionless specific heat

[Kz (dzf/dxz)kl =1 and the critical exponent a = - 0.654.

We obtain, |K°(d°f£/ak?)] "1 = 0.4895 and o = - 0.2973 (the exact
) K

values are 0 and 0(Iln) respectively) .
Let us now discuss the dependence of our results on

cluster size. The curve of specific heat near KC(O <K§O.9), see

Fig. 4 and table 1) and the curve of spontaneous magnetization
(using both criteria) for all K, improve when the size of the
cluster increases from b=2 to b=5. For wvalues far from
Kc(Kil.O) we obtain a slightly negative specific heat. Extra-
polation considerations suggest that this defect would tend to
disappear for b—+» « . In what concerns the critical exponents, Yy
through criterion (b), Yopr @ and B (through both criteria) present the
correct tendency for b growing from b=2 to b=5, whereas Yy through
criterion (a) (which is rather rough from the topological stand-point)
presents the wrong tendency at least until b=5 (as both cri-
teria become equivalent for b »®, one can speculate that this
tendency will be reversed for larger clusters, as suggested by
simple extrapolation considerations). The convergence of real
space renormalization groups is a rather delicate point : see
Griffiths and Pearce (1979) for general remarks and Sneddon and
Barber (1977) for the particular case of decimation ( although
the decimation discussed therein is quite different from the
present one, and therefore it is not obvious that their conclu-
sions could straightforwardly apply to the present case. How-
ever an increasing amount of concrete treatments (Ising as well
as percolation model: Reynolds et al 1979, Curado et al 1981,

Eschbach et al 1980 among others) suggest that convergence to-
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wards the exact solutions does exist, at least for the present

type of real space renormalization group.
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Figure Caption

Figure 1 Rencormalization of the cluster with b= 2. The
renormalized nearest-neighbour iteration K'(K)
is obtained by renormalizing the self-dual

cluster (a) to the (b) one. The u and Gi

A’ VB
(1=1,2) are the site spins of clusters.

Figure 2 Renormalization of the cluster with b=5 when
the magnetic interactioan is present. The assign
ment of the magnetic field and the spin related
Fo each i-th site, i=1,... 20, are piH and Oi

respectively.

Figure 3 The percentage errors of the internal energy;
g = [@f/ar) - (a£®*2°t , @ 100 / (a£®*2ax) .

Doted line: the b=2 case, full line: the b=5

case.

Figure 4 The reduced specific heat K2 (dzf/dKz) . Doted line: exact
value (Onsager 1944); full line: our result; (a) with
b=2 and (b) with b=5.

Figure 5 The negative K2(d2f/dK2) values obtained (notice
the scale amplification with respect to Fig. 4).
Dashed-dot~dot line: exact value (Onsager 1944).
(a) our results obtained with different cluster
sizes, dashed-dot line: with b =2, doted 1line:
with b= 3, dashed line: with b=4 and full line:
with b=5., (b) extrapolation to the cluster with
b-+» . Doted line: using the results obtained
from clusters with b=2,3 and 4; dashed line: the
same with b=3,4 and 5; full line: the same with
b= 2,3,4 and 5.

Figure 6 The spontaneous magnetization. Doted line: the b =2
case, where the two criteria are the same (see
Fig. 1(a)); full line: the b=5 and criterion (b)

case; dashed line: exact value (Yang 1952).



Table Caption

Table 1 Values related to the internal energy (U=-J(df/dkK)
and the specific heat (C::kB K2 (dzf/dKz)), the
Yy
thermal y, ((dK'/dK) = b T) and a(a=2 - d/y,)

exponents obtained with different cluster sizes.

631
Table 2 The magnetic Yy ((9H'/9H)H:0 = b ) and
H=K
c
B(B=(d - yH)/yT) exponents.
Table 3 Extrapolation of Yg for b-~>«, Value I: obtained

by making an extrapolation with the results from
clusters with b=2,3 and 4; value II: the same
with b=3,4 and 5; value III: the same with b =
2,3,4 and 5. The values I and II are calculated
in order to analyze the tendency of the extra-

polation.



Table 1
2_.1-1
s | % | i a
K dk™ /K
c
2 1.3770 0.4895 0.8706 -0.2973
3 1.3866 0.3786 0.9014 -0.2187
4 1.3922 0.3377 0.9132 -0.1900
5 1.3956 0.3173 0.9192 ~0.1758
Exact | /2 =1.4142 0 1 0 (1n)
Table 2
r -~ .
Criterion (a) § Criterion (b)
b i
Yy B Yy B
2 1.8706 0.1486 1.8706 0.1486
3 1.8681 0.1463 1.8715 0.1426
4 1.8674 0.1452 1.8720 0.1402
5 1.8673 0.1444 1.8722 0.1390
Exact 1.875 0.125 1.875 0.125
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Table 3

¥y
Extrapolation g
Criterion (a) Criterion (b)
I 1.8676 1.8739
11 1.8690 1.8724
IIT 1.8700 1.8714
Exact 1.875




(a)

Figure 1

(b)

- ¢
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