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ABSTRACT

We discuss the one-dimensional first-neighbour %-—spin
magnetostrictive XY model (where the crystalline degrees of free
dom are assumed to be three-dimensional), and ehxibit that, for
all temperatures below Tc, no other contributions to the sctruc
tural order appear than the pure dimerization one. The influ~
ences of temperature and elastic constant on the order parameter

and sound velocity are analyzed as well.



In the last decade increasing effort has been dedicated
to the study of the so called spin-Peierls instability (SPI) which
induces structural phase transitions in systems which are magnet-
ically quasi-one-dimensional although three-dimensional in what
concerns crystalline interactions. The system typically presents
an uniform (or disofdered) phase (equidistant atoms along the
chain) at high temperatures and a more complex (or ordered) phase
( a structurally dimerized or polymerized chain) at low temper-
atures. These facts have been tested[l-7] on several substances
like TTF-BDT and alkali-TCNQ salts. The relevant models that have

[8_13] and HeisenbergDA_Hﬂ

been used are the magnetostrictive XY
ones. ThHe XY model has the advantage of being exactly solvable,
at least in what concerns the magnetic degrees of freedom.

Pincus[sj showed that an XY antiferromagnetic linear chain is,
at vanishing temperature, unstable, with respect to dimerization.
Beni and Pincus[g]showed next that this instability induces a
second order phase transition between the uniform and dimerized
phases, under the assumption that those two phases are the only
ones to be considered. Dubois and Carton[lO]proved that, at the
critical temperature Tc and coming from high temperatures, appears
an order which is indeed a dimerization. The scope of the present
work is to study what happens below Tc’ particularly to test if
any other modes (in the immediate neighbourhood of the dimer-
ization mode or not) become unstable as well. We shall exhibit
that for all temperatures below Tc’ no other contributions to the
structural order appear than the pure dimerization one. This fact
provides "a posteriori" a justification for the calculations of
the vanishing external magnetic field free energy, order param-
eter, specific heat performed in Refs.[9—13] where pure dimer-
ization has been assumed for the ordered phase of the XY model
(furthermore, in Refs. [14—19] the Heisenberg model becomes,with
in the framework of certain approximations, equivalent to the XY
model; within this restricted context the present justification

holds also for the Heisenberg model) .

Let us now describe our argument. The magnetic contribu-

tion to the Hamiltonian of the % - spin XY cyclic linear chain

(with unitary crystalline parameter) is given by
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where, for future convenience, we have artificially separated the

interactions into odd and even ones. Through the Jordan-Wigner

transformation[zo] this Hamiltonian can be expressed as follows
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.where the fermionic creation and annihilation operators have been

introduced. By using next the Fourier transformed guantities
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This expression can conveniently be separated into two terms, namely
Mo =dl, v (4"

where yfo is the g=0 contribution (related to pure dimerization)
and V the g#0 one. Let us finally introduce new quantities through

the transformations
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We intend next to calculate the magnetic contribution Fm

to the free energy of the system. To perform this we shall[ York
21
r by

treating V as a perturbation to *¥o (we discuss later the impli-

within the temperature dependent Green functions framework

cations of this treatment). We obtain, at a given temperature T,

F,o=F +F  +F, + ... (14)
where Fo is the magnetic free energy associated to<#fo and is

given by
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Fl vanishes because of the quasi-fermions (spinless magnetic excit

ations associated to the a's and B's operators) linear momentum

conservation; F2 is given by
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and w, = kBT m(2n+l) with n=0,21,42, ...

The two terms of expression (17) (expression (18)) are diagramatic
ally represented in Fig. l.a (Fig. 1l.b). Through standard complex

plane integration we obtain
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We are prepared now to introduce the elastic contribution Fe

to the free energy of the system. Contrarily to the magnetic con-



tribution, this one is going to be treated only approximatively ,
namely within the adiabatic approximation (see Refs. [22,23] ) ;
by doing this we roughly take into account the crystalline three-
dimensionality of the real system; i.e. the role played by struc-
tural fluctuations is reduced into a minor one. Furthermore, we
neglect the anharmonic elastic contributions (we discuss later the

small error herein introduced). We have therefore that

2NC 2
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where C is the harmonic elastic constant, xj is the mean position
of the j-th spin (with respect to its position in the uniform

phase) and
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Let us now go back to the magnetic contribution. We recall
that the Hamiltonian (1) includes interactions only between first-
neighbouring spins, characterized by an exchange integral noted
J(u), where u denotes their incremental distance with respect to

the reference one in the uniform phase. We assume

J(u) = J(©) + J'(0)u (24)

The truncation of the series associated to J(u) introduces errors
comparable to those coming from the non inclusion of anharmonicity

in the elastic contribution. It follows. from (24) that

sz = J(0) + J'(0) [ij+1 - xzj:]
(25)

J2j—1 = J(0) + J'(0) [XZj_ X2j—l]

and, by using the two last expressions of (3), we obtain



J_=J(0) ¢
g (0)

_ -iq
+ J' (0 X e - X
q,0 0) |*%q qJ

(26) .

q,0 q

Eq = J(0) § + J'(0) |x ™19 _ §q]

The use of relations (26) into definitions (7) and (10) leads to
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If we replace now expressions (26) into (12) and (13) and those

into (16) we obtain F. which added to FO (given by relation (15))

2
and to Fe (given by relation (22)) finally leads to the following
diagonalized expression:
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and where G(k,q), G'(k,q) and the 0's are respectively given by
relations (17'), (18') and (6). Notice also that in expressions
(30) we used the quasi-continuum limit (N-»«), Furthermore, we have

that
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In the particular case of a pure dimerization b%j_f=-x2j31> 0 Vj)
we have
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hence .
!
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and
! _ .
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Let us stress that wq and wé satisfy wq> w:;\vq and respectively
correspond to optic and acoustic structural branches (in partic-

ular g»0 implies mé « (). Furthermore wq equals wzl for g=t1/2



[9-12], at a criti-

as long as n, vanishes. As it is already known
cal reduced temperature tc and coming from above, the dimerized
structure appears through a second order phase transition. Coher-
ently with this fact, we expect W, to vanish at tc; clearly the
critical frontier in the t-K space (see Fig. 2) 1is given by

wo(tc,K;nO=O)=O, which leads, through use of the first of relations

(29), to /2

, _ 1 sin’k cos k
k=7 dk sk Tt (37)
)

-
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whose asymptotic behaviours are

1/8K if K-> 0
tLv o, _ (38)
¢ e K if K» o

Let us now focalize the dimerization order parameter n,-

Within the assumption (proved afterwards) that the ordered phase

is a pure dimerization (and consequently nq = n21= 0 vgq # 0) the
free energy given by relation (27) reduces to fo + % Kné; there-
fore the equilibrfum value of ng is given by
Bfo
} + X - . (39)
2 2
Bno
t,K

which, through (15) and (28), leads to

m/2

sin?k /goszk + né sin?k
dk th
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Two typical cuts of the surface no(t,K) are presented in Fig. 3.

Let us now discuss the central point of the present work:
what happens with w_ and wé below tc, once we have replaced there
in the equilibrium value of N, (given by Eg. (39))? The answer
is presented, for a typical value of K, in Fig. 4 (any other value
of K leads to qualitatively the same results). We observe that,
below tc and going towards t=0, the whole spectrum wq and wé mono=
tonically increases. Therefore it becomes evident that no other
thermodynamical structural instability appears other than the
one already taken into account: the ordered phase is a pure dimer

. . . dw'
ization. The thermal behaviour of W, and of v = q ( propor-

dg q=0



tional to the sound velocity) are represented, for a typical
value of K, in Fig. 5 (wo and v respectively saturate at the values
Y2K and vK/2 in the limit t+»«, as a consequence of the disappear
ance of the magnetic contribution). At this point, let us go back
to the expansion (14), where we neglected terms of the fourth (or
higher) order in nq and né (F3 vanishes). This is justified only
if no structural modes (for any non vanishing value of g) suddenly
freeze down, i.e., no new phase transition (necessarily of the
first order) occurs besides the one already taken into account.
This conjecture is strongly supported by the monotonic increase of

the spectrum (for decreasing temperature below tc)zﬂieahrmaﬁimmﬂ.

Let us conclude by saying that the higher order terms we
have neglected in both expansions (22) and (24) have no influence
at all for t.ztc, and bring only small guantitative modification
for t'<tc. For example the inclusion of a fourth order anharmonic
elastic constant in the expansion (22), provokes a depression of
the order parameter®in the region of low temperatures (the smaller

the temperature the higher the depression).

One of us (C.T.) acknowledges useful remarks from M.E.
Fisher, R.B.Stinchcombe and J.Villain; the other one (R.A.T.L.) was
partially supported by a fellowship from CNPg/Brazil.
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CAPTION FOR FIGURES

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Feynman's diagrams associated to the ZEd order magnetic
contribution to the free energy; the full (dashed) lines
correspond to a-(B-) propagators. (a) terms of expression

(17); (b) terms of expression (18).

Reduced critical temperature as a function of the in-
verse reduced harmonic elastic constant (U and D respect

ively denote the uniform and dimerized phases).

Two typical cuts of the surface which represents the
dimerization order parameter as a function of the re-
duced temperature and harmbnic elastic constant: a) for
K=0.4; b) for t=0.

Thermal behaviour of the spectrum which characterizes

the thermodynamical structural instabilities (K=0.4).
> - — - . .

(a) t t.i (b) t t.i (c) tritc' (d) t << t

Thermal dependence of the g=0 optical square reduced
frequency (a) and the reduced sound velocity (b) for
K=0.4.
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