CPBF-NF-005/84

MODELO COSMOLÓGICO HOMOGÊNEO FECHADO, COM CAMPO

MAGNÉTICO DE ALCANCE FINITO

de

J.L.C. Costa*, Idel Wolk e A.F. da F. Teixeira

Centro Brasileiro de Pesquisas Físicas - CBPF/CNPq Rua Dr. Xavier Sigaud, 150 22290 - Rio de Janeiro, RJ - Brasil

*Instituto de Física - UFRJ 21944 - Rio de Janeiro, RJ - Brasil

RESUMO

Mostra-se que as simetrias do universo de Einstein se preservam sob inserção de um apropriado campo magnético de curto alcance.

ABSTRACT

We show that all symmetries of Einstein universe are preserved upon insertion of a uniform, Clifford-parallel massive magnetic field.

É bem sabido que, em Relatividade Geral, sistemas distintos originam gravitação análoga quando seus energia-momenta são quantativamente iguais.

No universo de Einstein, por exemplo, o elemento de $1\underline{i}$ nha^1

$$ds^2 = c^2 dt^2 - d\ell^2 , \qquad (1)$$

$$d\ell^2 = (dx^2 + dy^2 + dz^2)/f^2 , f = 1 + \frac{1}{4}(x^2 + y^2 + z^2)/R^2$$
 (2)

implica em energia-momentum

$$T_{ij}^{\mu} = diag(3, 1, 1, 1),$$
 (3)

nas unidades k=c=R=1; sendo isotrópico (além de homogêneo) o modelo, fontes igualmente isotrópicas são em geral consideradas, tais como densidade ρ de matéria em repouso, pressão isotrópica p, e polarização Λ de vácuo; conjuntamente elas produzem

$$T_{y}^{\mu} = \text{diag}(\rho + \Lambda, \Lambda - p, \Lambda - p, \Lambda - p),$$
 (4)

que satisfaz (3) de infinitos modos.

Parece-nos interessante encontrar fontes anisotrópicas com energia-momenta compatíveis com (3). Campos de Maxwell adicionados ao fluido (4) parecem matematicamente inadmissíveis. Entretanto, a superposição de um campo magnético de Proca (ou de alcance finito) provou ser admissível, segun-

do uma técnica baseada em paralelas de Clifford, como se verá a seguir.

Essencialmente, o campo de Proca é um campo de Maxwell com alcance λ finito, Tem energia-momentum³

$$P_{\nu}^{\mu} = F_{\alpha}^{\mu} F_{\nu}^{\alpha} - \frac{1}{4} \delta_{\nu}^{\mu} F_{\beta}^{\alpha} F_{\alpha}^{\beta} + \lambda^{-2} (A^{\mu} A_{\nu} - \frac{1}{2} \delta_{\nu}^{\mu} A^{\alpha} A_{\alpha}), \qquad (5)$$

onde A_{u} é o quadri-potencial de Proca e

$$F_{uv} = \partial_{u}A_{v} - \partial_{v}A_{u}. \tag{6}$$

As P-equações heterogêneas são

$$F_{;\nu}^{\nu\mu} + \lambda^{-2}A^{\mu} = j^{\mu}, \qquad (7)$$

o ponto-e-virgula simbolizando a derivação covariante no quadri-espaço. Para conservar a P-fonte j $^\mu$, é imposta a condição de Lorentz sobre A^μ :

$$A^{\mu}_{:u} = 0$$
 , $j^{\mu}_{:u} = 0$. (8)

O P-campo materializará as paratáticas, ou paralelas de Clifford, que são geodésicas equidistantes peculiares a triespaços com métrica (2). Em cada ponto (x,y,z) pode-se traçar duas paratáticas ao eixo z (ele próprio uma geodésica), cada uma com tangente $\eta^a = dx^a/d\ell$ de componentes

$$\eta^1 = -\epsilon y + \frac{1}{2}xz$$
, $\epsilon = \pm 1$,

$$\eta^2 = \varepsilon x + \frac{1}{2} yz$$
 , $\eta^3 = 1 - \frac{1}{4} (x^2 + y^2 - z^2)$. (9)

Ambos os campos vetoriais n^a são unitários e satisfazem as equações das geodésicas e de Killing,

$$\eta^{a}\eta_{a} = 1$$
 , $\eta^{a}\eta_{:a}^{b} = 0$, $\eta_{a:b} + \eta_{b:a} = 0$, (10)

onde o dois-pontos significa derivação covariante no tri-espaço (2).

Admita-se o quadri-potencial com componentes

$$A^0 = 0$$
 , $A^a = \alpha \eta^a$, $\alpha = const$, (11)

então o P-campo será dado por

$$F_{0a} = 0$$
 , $F_{ab} = -2\varepsilon\alpha f^{-3}\varepsilon_{abc}\eta^{c}$, (12)

onde ε_{abc} é o símbolo totalmente antissimétrico com ε_{123} = +1 e a métrica (1) é usada. Por analogia como campo de Maxwell, diz-se que as componentes P-elétricas inexistem, havendo porém um campo P-magnético paratático ao eixo z.

A fonte é obtida de (7), fazendo-se $\lambda = \frac{1}{2}$:

$$j^0 = 0$$
 , $j^a = 8\alpha \eta^a$. (13)

Diz-se que a densidade de carga P-eletrica e zero, havendo

porém uma tri-corrente de Proca paratática ao eixo z. Como a corrente e o campo magnético são paralelos, a P-força é nula.

Finalmente, calcula-se P_{ν}^{μ} e se encontra uma única componente não nula, $P_{0}^{0} = 4\alpha^{2}$. Isto permite a coexistência do P-campo anisotrópico e o espaço-tempo isotrópico (1) com o flui do anterior (4), como foi mencionado. No total, para o novo raio R=1 as novas quantidades ρ , Λ , ρ , α devem satisfazer

$$\rho + \Lambda + 4\alpha^2 = 3 \quad , \quad \Lambda - p = 1 \quad . \tag{14}$$

Campos de alcance finito tem uma massa associada segundo a relação quântica mc = h/λ . Quanta com $\lambda \to \infty$ tem portanto m $\to 0$. Como o quantum de um campo de Proca com alcance $\lambda = \frac{1}{2}$ R (semi-raio do universo, uns 10^{10} anos-luz) pesa apenas $10^{-6.6}$ g, tal P-campo é presentemente experimentalmente indiscernível de um campo de Maxwell. 5

Campos de Proca com $\lambda \neq \frac{1}{2}$ R tem componentes não-diagonais em P_{ν}^{μ} , portanto requerem constituintes adicionais apropriados para formar o universo (1). Estudos nesta linha estão em anda mento, bem como extensões para situações mais realistas, dependentes do tempo.

REFERÊNCIAS

*Bolsista da CAPES

- 1 J.L. Anderson, "Principles of Relativity Physics" (Academic Press, New York, 1967).
- 2 G. Wentzel, "Quantum Theory of Fields" (Interscience, New York, 1949).
- 3 A.F. da F. Teixeira, Acta Phys. Slov. 29 185-91 (1979).
- 4 H.S.M. Coxeter, "Non-Euclidean Geometry" (Univ. Toronto Press, 1968).
- 5 L. Davis, Jr. A.S. Goldhaber e M.M. Nieto, Phys. Rev. Letters <u>35</u> 1402-5(1975).