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RESUMO

A equagao de difusdo para sistemas nao-holdnomos & ob
tida e discutida. Estabequagio, valida no limite de alta visco-
sidade, exibe, no estado de equilibrio, correntes solenoidais
permanentes. Essas correntes desaparecem quando o sistema torna
-se Liouviliano, um conceito introduzido para generalizar o com
portamento dos sistemas holonomos. Mostra-se ainda que a equa -
¢ao de difusao apresenta continuidade quando se passa dos siste

mas nao-holonomos para os sistemas holonomos.



ABSTRACT

The diffusion equation for non-holonomic systems is
derived and discussed. This equation, valid in the limit of
high viscosity, exhibits in the equilibrium state permanent
solenoidal currents. These currents disappear when the system
is Liouvillian, a concept introduced to generalize the beha-
viour of holonomic systems. It is further shown the continuity

of the diffusion equation from non-holonomy to holonomy.



1. INTRODUCTION

Constraints are usually of the form

a;(q)dq" = 0

and represent a restriction on the possible displacements of
the system. In the above equation q1 are the coordinates of the
system and a;(q) are the components of a vector that points in

the direction where the motion is forbiden.

Let us suppose the system moves in an n-dimensional

*
manifold subject to m (m < n) constraints

0 zalde'=0 , oa=1,....m . (1.1)

c . a . - . o . .
V. write dw~ for the exterior derivative of w 1i.e.:

aa9

do® = — dqj A dq1
an

where-.. is the notation for exterior product of forms. The sys-

tem (1.1) is integrable if and only if there exists 1-forms eg

such that

a m a R
w = Z 6. A w ; (1.2)

otherwise the system is not integrable. Mechanical systems sub-

ject to non-integrable constraints are called non-holonomic systems

Repeated latin indices subintends summation.
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If the system of eqs. (1.1) is integrable then one can
find m functions ¢a(d) representing hypersurfaces in the n-dimen-
sional manifold of configurations of the systems. The motion is
therefore restricted to one of the submanifolds defined by the
intersection of these m-hypersurfaces and can be thought as an
unconstrained motion in this (n-m) dimensional configuration space.
As far as the motion of the system is concerned, the consequences
of restricting it to a submanifold is, besides the reduction in
the degrees of freedom, the modification of the metric of the
configuration space. We will assume from now on that the metric is
given by an arbitrary fundamental tensor g and therefore the
kinetic energy T of the system has the general form
' ity . (1.3)
The fact that the system (1.1) is not integrable does not exclude
the possibility of having integrable subset of constraint equa-
tions. If this is so, we may always assume, without loss of ge-
nerality, that these subsets of equations have been integrated and
the configuration space reduced correspondingly. Thus, it is no
fundamental restriction to assume that for the system of cons-
traints under consideration every subset of equations is also

not integrable.

The equations of motion under the influence of a gene-

ralized force Fi are:

i (1.4)

d (3T ) _ aT
1

m
— = Y axa? + F,
dt 3q1 3q ofp Totd

These are D'Alembert's équation and Aa are Lagrange

multipliers that can be elliminated by the use of eqs. (1l.1).



Thus, from eq. (1.4) we get

. . . m . .
i i +jck _ o i i
4 + 'z, 9°q = § A"al + F (1.5)
Jk a=1 a
where
. . 08, - og og.
1 1 if L k2 ik
r:, =>g __Kl + K% (1.6)
k 2 L
) 3q 3q7  3q” |

. . . . . ij
is the affine connexion associated to the metric tensor g ).

We may assume, without loss of generality, that

o i _ .a
a; ay, = Ga'
where
i _ _ij_ o'
a g aj
From
a? dl =0 . o = 1,..., m (1.6a)
we obtain
o
da. .. .
—+q'¢? +af§* =0 . a=1,...,m (1.7)
BqJ

Using eq. (1.5) into eq. (1.7) we obtain
A a *j ek

= - - a% pJ
as.x 9474 as F (1.8)

where we introduced the covariant.derivative notation



Elliminating 2% from eq. (1.7) we finally arrive at

g N : Gk i
gt o+ P;k g a;a?.quq + QF’ (1.9)

nNes~—4

a=1

where Q§ is the following projector operator

Q=

. m
1
J J Z 2

i
. aa? : (1.10)

We consider eq. (1.9) together with eqs. (1.1) the fun-
damental equations of motion for non-holonomic systems.

Let at this point observe that if eqs. (1.9) were equi-
valent to a hamiltonian system, the problem of obtaining the dif-
fusion equation for non-holonomic systems would be greatly sim-
plified as Hamil@on's equations are manifestly covariant and
Liouville's theorem ensures the existence of an invariant measure
of probability in the phase space of the system.

Let us for the moment set the applied forces equal to

Zexro (FJ =0 1in eq. (1.9)). A hamiltonian associated to the

constrained system 1is

(1.11)

where Q1J is given by equation (1.10). The equations of motion

for the system described by H are

«i 3H _ .ij
q ap—i Q Pj

(1.12)

"



and we observe that f£rom the first set of Hamilton's equations

we have

what shows that the above system obeys the constraints given by

eqs. (1.1).

From eqs. (1.12) we obtain

i, pigick ? ia sjek ij % 33? 23] .x
q° + r,,a’q = - aa:. 14°q + Q P, I—x - —5|4
Jk a=1 a J,k o=1 a 3q 3 J

(1.13)

where we have set

Let us observe that -Pa are the componenfs of the mo-
mentum in the forbiden directions of mofion and as such they are
not directly connected to the velocities of the system, these
being given by Qijpj, the components of pj in the allowed
directions of motion. Therefore Pa are not fixed by the initial
condition of the trajectory. They behave rather as control varia-
bles to lead the motion from an initial position to a pre-establi
shed final point in the configuration space at a fixed time inter-
val. For non-holonomic systems there is always a possible trajec-
tory between two fixed points in the n-dimensional configuration
space even through the system has only (n-m) degrees of freedom.
In this case, Pa plays the role of additional parameters to com-

pensate the lack of degrees of freedom.

In order that eq. (1.13) should agree with eq. (1.9)



it 1s necessary und sufficient that the relation

aaq aaﬁ
P |l—-—|a =0
1

aq 3q?

P

Q)

he~3

a

k

be valid for every possible values of P and q . This is equi-

valent to assume that there exists eg.k such that

aaq Baa m 1
i_ 2%k gqk = ¥ 6%, a%' aqk
— q ' . q
[aqk an] a'=1 a'k J
Because of eq. (1.6a) we also have
a a
da . ca m ' m '
3 _ 'k 4 k _ o a'y k _ a a’y k
=] dq Y 8,25 da I 8, .:a dq
{aqk qu} ats1 *'Kd ors1 'K

which, in exterior form notation, can be written as

a m o a'
dw” = z 67, A w
, L o
a'=1
with
o _ .0 k
ea| - ea'kdq

This shows that the dynamics described by H given by
eq. (1.11) agrees with the dynamics of constrained systems if
and only if the constraints are integrable. In spite of this
fact, the Hamiltonian given by eq. (1.11) was used in reference
(1) to obtain a generalization of the diffusion equation for
non-holonomic systems in the hope that this generalization would

contain the hclonomic case as a limiting case. This was observed



not to be so and actually the generalized diffusion equation
there obtained predicted, in the equilibrium state a unifofm
density distribution over the whole configuration space, in-
depcndent of the nature of the constraint, and contrary to the
holenomic limit (1). |

In this paper we will develop the theory of diffu-
sion for non-holonomic systems, directly from eqs. (1.9) with
the help of Fokker-Planck equation for Markovian systems. We
will generalize Fokker-Planck equation for an arbitrary measure
of probability in phase space and we will chose this measure in
such a way to ensure covariance of the equation with respect to
arbitrary point transformations. After establishing this fact
we will deduce the hierarchy of hydrodynamical equations and
we will show that the diffusion equation is the 1limit, near
equilibrium, of an expansion in the mean free path of the parti-
cles. From the diffusion equation obtained we will prove that it
goes into the correct limit for holonomic systems. It reproduces
also the result previously obtained (2) when the constraints,
though non-holonomic, are such as to preserve the validity of
Liouville's theorem of incompressible flow in phase space. We
will further show that in general, non-holonomic systems may present,

besides a non-uniform density, a permanent solenoidal current

of particles in the equilibrium state.

7., THE FOKKER-PLANCK EQUATION

Let us consider w(xl,xz;t) the transition probability

for a Markovian process, i.e., the probability of finding a

particle at the position x, of its N-dimensional phase space



knowing that the particle was at x,, t seconds earlier. The

Chapman-Kolmogorov equation for this process 1is

N
m(Xl,Xz;tft') = J“(xs)w(xl'Xs;t)“(XS’Xz;t')d X4 (2.1)

where we have assumed that the phase space probability has a

measure given by u(x).

It is well known (3) that if we assume the following

properties for w(xl,xz;t):

(i)  <oxt>

N i i ) -
Id xlu(xl)(xl—xz)w(xl,xz,At)

Ai(xz)At +0(at)) (2.2)

“(ii)  <AxTax?

N .. ..
fd xlu(xl)(xi—x%)(xi-x%)w(xl,xz;At) =

Bij(xz)At + 0(atd (2.3)

(iii) higher momenta of w(xl,xz;At) are of order equal to or

larger than Atz;

then, the following approximation of the Chapman-Kolmogorov equa-

tion, known as the Fokker-Planck equation, is obtained:

dw ) - 1 ) 1 i
2000 = gy 3 (M epueutg i) .
1

(2.4)

2 . .
1 ) ij o)
zutxlT axiax:]l [B (Xl)u(xl)w(xl,xzvt)‘

N~



Let us define the one-particle distribution function

W(x:it) as

W(x;t) = JdNy u(y)w(x,y;t)W(y;:o) ;

then, W(x;t) satisfies the same differential equation as

w(xl,xz;t) and we have

' . 2 . .
W, ..y _ 1 3 (,1 X 1 1 2° [ xw(x:t ]
Fosn = -y Z(Aeoven] « 3 gdy p ey

(2.5)

We apply this equation to the motion of non-holonomic
systems described by eq. (1.9) when subject to a viscous force-
-Cdj'and a Langevin force Lj(t). We assume 7, the coefficient
of viscosity, a constant scalar and to Lj(t) we give the follow-

ing statistical properties:

rAt .
(i) < L (t)dt> = 0
/0
rAt At ) ) o
(ii) <[ at [ at ety = 2k g1 ar + 0at?
J 0 0
(iii) higher order correlations of LJ(t) are of order higher

than or equal to Atz.
Under these conditions, besides being Markovian, the
transition probability for the system satisfy the properties

necessary for the validity of Fokker-Planck equation and we have:
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<Agqt> = viat

. — . m . . .
i, _ i i a ik _ 1
<AV > :[rjk + Z aaaj;kJ v7v CV’] At (2.7)

a=1

<aviavds = 2xQiiat

as the only moments of the transition probability of first order
in At irrespective of the choice of u(x).

Let us introduce the vectors b? (B=1,...,n-m) such

that
B i
(1) biaa 0
.. B, i B
(11) bibB' 68'
where
i _ _ij.8'

and observe that the phase space of the system is the direct
sum of configuration manifold and the space spanned by the

pseudo-velocities. We further observe that

dnqldn-m UB _ dnqidnvi

?I‘.ﬁ;

o i
1 6(aiv )
We will set

b= ogl@ T s(aivh) (2.8)
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as the measure cf probability with

g(q) = det (g..)

ij
and we take the phase space as the tangent fiber-bundle of the
configuration manifold.

Making use of eqs. (2.7) and (2.8) into eq. (2.5) we

obtain

i . m . .
oW \ o 3 i ia k _
= t — —OY (gW) - -——i- [(T + z a aj.k)VJV WJ =

0t & 3q 3V ik 1 @3
= _ET [CVlw + KQ1J EET] . (2.9)
A av

We take the above equation as the fundamental equation
to describe the stochastic motion of non-holonomic systems under
the action of viscous and Langevin forces.

From now on we conclude this section proving that eq.

(2.9) is covariant under the following general transformation:

q = q (@
_ L (2.10)
vi= 2]
an

We first observe that using the following property of g:

13 _ J
2 ;ii = zrij (2.10a)

we transform eq. (2.9) into
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oW S ) . aw k
+ \ [—~—-—1 rlk v )

. m .
= _EI (Cvlw + alaa K vIvEy + Q1J ﬁﬂj (2.11)
dv a=1 * 3> v

The second member of this equation is manifestly in-
variant being the divergence of a vector in the velocity sub-

space. This is so because the transformation (2.10) is indepen-

dent of vl.

We will now show that the following object

ow rik vk oW
Bq av7

behaves as a vector exhibiting therefore the invariant nature of

ea. (2.9).

We have
wi=i 3 ]
W(q,v;t) = W|q'(q), —“»7 vt )

3q
from the scalar nature of W.

Therefore

BW_ _ oW 3’ , oF 2’3 _k

L1 S v (2.12)
aqr  9q? aqt o) aqlagX
On the other hand we have
3%q3 T2 8@ _ 5 33" ag"
1. k ik [ mn 1
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Making use. of the above relation into eq. (2.12) we

finally obtain

: - —2
oW j ok oW (oW =j =k 3W ] 39q
—_— - T v ——— = - _ - T v —_— ——
aq?l ik v laal 2k 377 ) 3q?

what exhibits the vector character of

ﬂf"rik"kﬂ*
9q av?

and therzfore the invariant nature of Fokker-Planck equation.

3. THE HYDRODYNAMICAL EQUATIONS

We may look at eq. (2.8) as describing the motion of a

fluid in the configuration manifold. The density of matter of

- this fluid is defined by

m .
pl@it) = [ g 1 s(aivhnia.vindy (3.1)
a=1
and its current as
1 3 \|
j1 = J Vg %1 G(aivk)VIW(q,v;t)dhv (3.2)
a:

These objects are particular cases of the definition

of the »-th moment of W in the velocity space:

g :
G(aivk)v 1...V v W(q,v;t)dhv (3.3)
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from where we recognize p and j® as the zeroth and first mo-

ments respectively.

We will assume that W vanishes sufficiently fast for
- QI e o @ 24
1 1’ y

vi\‘ + o in order that P v

to be defined by the inte-

L S
gral in eq. (3.3). We further observe that P 1 Vis a
symmetric tensor in all its indices and
i i a =1, , 1
k

k=1,...,v
Integrating on both side of eq. (2.9) over the velo-

city space we obtain the zeroth moment equation:

,O
+

Q
(a4
w1 |-
[o%)
£
b

2 vg i =0 (3.4)

wich expresses the éonservation of matter.
Multiplying both sides of eq. (2.9) by v' and in-

tegrating over the velocity space we obtain the first moment

equation:
.1 ij s . . m . . .
3j P k ij 1 jk i a jk _ _ i
st * aqj * Tyy P MRETR S azl aaaj;kP z)

(3.5)

where we made use of the eq. (2.10a). Similarly we could obtain

the v-th moment equation and eq. (2.9) results to be equivalent to

a hierarchy of hydrodynamical equations, the equations for the

moments of W in velocity space.

Before proceeding te write down the general form of

these equations, let us introduce a new affine connexion defined by
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. ai i E (3.6)

T = Tk *

and use the colon for the covariant derivative associated to this

new conexion; for example

- ij s . - .
ij _ oP 1 2] J 18
Pk 2qX P Tke POt T P

and similarly, in the usual fashion, for every other tensor. With

this notation, eq. (3.5) takes the form

.1 .. .
9] ij _ _ 1
T P:j zj (3.7)
Because of
.1 .1 1 2 .1
jos =il = = — (Vg i)
:1 1 /E aql
we also have
ap .10
3¢ T3 70 (3.8)

for the zeroth order moment equation. The v-th moment equation

takes the form

L L
1°- ’ “en — .o
3P v . Pkl, L4 ) —chQl’ ,lv . 2K Q21£2P23, 2
ot 12 |
v+1 —
(3.9)
where the symbol |~ j+ stands for the symmetric combination

in the indices of the direct product of the tensors inside the

bracket. For example, we have
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ij . . -
e SR 15 2 A T (O PR (3.10)
apiIk  i5xy ijk ij.k . ik.j . ~jk.i
3 + PTITY = - 3P IX 4 2K(QY 5% + %57 + 25 L (3.1
ik . . . .
gi + Pl]klwm - _ 4€P13k2 + ZK(Qljpkl + QlkPJ£ +
. Qi%pIk L ikpit , gitpik , okfpij, (3.12)

and so on.

Thé fact that we can write the hydrodynamical equations
in a new covariant notation using the asymmetric connexion given
by eq. (3.6) can be drawn back to the fact that there exists a
space, even for non-holonomic systems, to which the motion is
referred as unconstrained. E. Cartan (4) was the first to call
attention to this fact, and to exhibit the torsion of this space.

With the connexion defined by eq. (3.8), the equations

of motion (1.9) can be written as

i

Dv™ _ ig]
bt - F
where
i i . )
Dv™ _ dv i . J. k
pt- - d& " Tk vV

is the absolute acceleration in the space with the connexion F;k.
If the system is holonomic then we can find gij such
that f;k keeps the same relation to éij as expressed in eq.

(1.6).

If the system is non-holonomic there is no such éii and
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besides the previous 'cquation we also must keep the relations

. o =1,..., m

to complete the description of these systems.

4. THE DEFFUSION EQUATIONS

From now on we will proceed looking for solutions near
the steady state equilibrium of the fluid and we will neglect

all partial derivatives with respect to time of all the moments

but p , i.e.,

Laseeeyr?
ap ! Vo .
ot >

I v
bt

(4.1)

Under this hypothesis we can rewrite the moment equa-

tions of the previous section as

| R —2,25 £5,0..,% | A 4
p 1 v o_ %% Q 172,73 f1+ 11 v+1

_ 24 : 2 (4.2)

v+1
from where we observe that the v-th moment can be resolved into
a (v-2)-th moment and the divergence of the (v+1)-th moment.
Making sistematic use of the moment equations we can
therefore reduce formally the hierarchy of equations into a
unique equation for p. This is the generalized diffusion
equation for the fluid.
Let us illustrate this ﬁrocedure. First we have

jl = 'pl:{j (4.3)
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and
ij _ K 15 _ 1 5ijk
P 7 Q"-p 7T P ‘K (4.4)
Therefore
3p _ K ij _ 1 ijk
3t ‘? (Q p);j:i ZCZ P tk:j:i (4.5)
Elliminating Pijk in the above equation we would get

terms whose sum of the order of derivatives would be equal to or

larger than fourth and so on.

Let us define the diffusion coefficient as

D = _Ié_ (4.6)
4
and the mean free path A
1/2
A = [%} . (4.7)

The equation for p can be formally written as

22 -nf 1 APV @e] (4.8)
\):

where Kv is an operator, functional of Qij, acting on p.KVp
has the property of all its terms being homogeneous of degrees
(2v+2) in the sum of the order of derivatives of Q and p.

The first two terms of the series are:

(Qijp)

KO (Q) P

K, (Q)

i
(N
—A
o |

d e
e
Ve
L
-
IS
©
| —
N
+
+
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‘7

.~.aiijéI+-2-k-j;i} (4.10)

If we assume that ag(q) varies slowly over a distan-

ce of thne mean free path of the particle, i.e.,

aa?

A J << , ¥a, i and j ,

aql

then on= would expect that p would do the same. Under these hy-
pothesis one is justified in keeping only the first term in AZV

expansion of eq. (4.8) and we set

20 - @t (4.11)

1jii
as the diffusion equation for non-holonomic systems.

Let us observe that if we set Q'J = g’ in the above
equation and take the usual covariant derivative we obtain the

diffusion equation for free particles in a Riemannian manifold

of metric glJ.

5. DISCUSSION

We will discuss now some of the properties of eq.

(4.11). To do so we begin by going back to the usual covariant

derivative and we have

@7p) =@l 22 v o gt (5.1)
2) 9q )

From the definition given by eq. (3.6) we also have



-20-

m . m . m
1) = - Jj, 1 J.1 k B (5 2)
Q = - aza,. . + ) ava Y ajal. .
J le B BoJ a=1 a a g=1 B J’k
where we made of the fact that
j, o _
aaaj;k 0
Because of
3B = 4B
o]
we get
k B _ _ .k a (5.3)
2032k 2853%

Making use of the above equation into eq. (5.2) we

arrive at

Q. = - il T ek (5.4)
J B:l 8 J,
and we may finally write
m
(s _
%% - D 31 /g Q {"QT -p ) asaj;k]} (5.5)
/g 3q 3q B=1

as the diffusion equation in the standard covariant notation.
We now discuss the holonomic limit.

In this case we may assume without loss of generality

that

@ [
-
H{ ™

a. = =4 (5.6)

w

wvhere
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B B /2
= (09 3¢ 1]

with the functions ¢B defining the integral of the system of

constraints, i.e.,

¢~ = const. . g =1,..., m (5.7)

defining the leaves of the foliation.
From eq. (5.6) we obtain
k_B _

aBaj;k (8

L

- a%afy 2 10g A
8937 3q

8

and we therefore get

where

Let us now define a new distribution density by the

following equation:

- p
p = —
Yo
Thus we get
5% = —= 5 [uo B Q" 22 (5.8)
UO/E °q - aq

Let us introduce the new set of coordinates by the
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following equations °-

i

R* = ri(q) . i=1,....n-m

RO - 4%q) , o =1,...,m
with

Eﬂi éﬁf = 0 . i=1,...,n-m

BqJ an a =1,...,m

Making this choice the coordinates R' are intrinsic
to the leaves of the foliation given by eq. (5.7).

We also observe that:

)‘:

(gij 0

_ -2
San' aaa' Aa

Under these assumptions eq. (5.7) takes the form

3p _ D 3 [F—ijaz] Lo
e I TN Vi o A , i,j = 1,...,n-m (5.9)
ot /% ar? 3R7

which is the correct diffusion equation for holonomic systems(1l).
We therefore conclude that eq. (5.5) has the correct limit for
holonomic systems. |

We now define as Liouvillian systems those for which

it exists a function Y that satisfies the following equation:



-23-

PR |
Q) Y a

K
=1 P

af = QP 2 (5.10)
J’ aq .
These systems include among them all holonomic system
and some non-holonomic systems as well. Its main property 1s
the existence of a measure of probability in phase space given

by ¢, independent of the velocities of the system.

In fact, making use of eq. (5.10) into eq. (5.5) we

have
%% - D _EI [u Qt) EBT] (5.11)
H 3q 9q

as the diffusion equation for Liouvillian systems. In eq.(5.11)

we defined

and

gives the measure of probability in the configuration space of
the system.

It is interesting to observe that Liouvillian systems
generalise the class of non-holonomic systems discussed in re-

ference (2).

Let us now consider the general case. We set

m
k

b. = ) a
a=1 ¢

a%
] sk

and we observe that in general eq. (5.10) cannot be fulfilled.

We therefore assume now that
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i ij 2 i
pg @7y = oy Q7 ;%7 + C (5.13)

. A . i
where pp 1S the equilibrium density and C 1s a sourceless

vector, 1.e.:

ct. =0 . (5.14)

Under these assumptions we have

.. dp
3 0 -
2 [’g QM (—5 - o bj)] =0 . (5.15)
aq 3q .

From eqs. (5.13) and (5.15) we get

. °p
9 1 0 3 _
9q aq aq

from where we take
pg = exp(¥) . (5.16)

Taking the divergence on both side of eq. (5.13) and

making use of eq. (5.16) we arrive at the equation for vy

13 ij . Ay _ aid 3y 3y
= < Vg Q (_._—b.)]—Q —-{b.————r] . (5.17)
Vg 3q" 3q? ) 3qt L) aq’

Therefore, the existence of a positive measure in the
general case is connected with the existence of a real solution
of eq. (5.17).

Let us write



~25~

and define p = p—p. -Then, eq. (5.5) takes the final form
0
22 -1 2 |y Q) Bp) -t 2y (5.18)
H aq an 3q

with Ci given by eq. (5.13).

The physical consequences of the general case are very
interesting. Similarly to the Liouvillians systems, the non-
-Liouvillian systems has a non uniform density distribution in
its equilibrium state. But, besides that, they also possesses at
the equilibrium state a pattern of permanent solenoidal currents

given by

Therefore we may say that in general the equilibrium
state of non-holonomic is richer in patterns than it is usually
observed for statistical systems in equilibrium.

We may further conclude, on physical grounds that,
because of the equilibrium, the direction of the permanent
currents (DCi) has to be perpendicular to the direction of the
gradient of the density of particles. In other words, we must

have

In this case, eq. (5.17) simplifies and we have

1 3 [/— ij 9y J =1 3 =61
— —5 |"8 Q7 = = = —3 (Vg Qb))
/g 3q" 3q?’) /g 8q’ J

as the equation for vy
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6. CONCLUSIONS

Our major conclusion from the study of the diffusion of
particles subject to non-holonomical constraints is the gppear-
ence of permanent currents in the equilibrium state of the system
whose pattern is established exclusively by the constraints.

In order to ensure this result we first derived a
Fokker-Planck equation for the diffusion of the system in phase
space and established the covariant nature of the equation obtai-
ned under general point transformations. Next we developed the
whole hierarchy of hydrodynamical equation and showed that in the
limit of short mean free paths (when compared with the spatial
derivatives of the constraints) we obtain a second order differ-
ential equation for the diffusion of particles in configuration
space. This equation suggests the classification of constrained
systems as Liouvillians and non-Liouvillians. A Liouvillian sys-
tem being those that does not exhibit permanent currents in
their equilibrium states.

Among the Liouvillian systems are the holonomic systems
as those systems for which the diffusion in configuration space
is restricted to the leaves of the foliation resulting from the
integrability of the constraint equations.

The second point to draw attention to it is to the fact
that a single equation contains the description of both Liou-
villian and non-Liouvillian systems and goes continuously from

one class to the other. It also contains the correct limit to

holonomic systems.
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