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ABSTRACT - Overhauser's theory of static spin density waves in an interscting
electron gas has been appliéd %0 the d-band in antiferromagnetic insulators.
Overhauser's theory is reformulated using the equation of motien method. By
introducing the Wannier representation one is led to three parameters: U, the
correlation energy between two electrons on the same ion; b, the transfer
integral for electron transfer between nearest neighbour ions and A, the gap
in the spectrum of excitations. It is shown that, if A is much larger than
the d-band width, one obtains a description of the conventional antiferromag-
netic insulators, like NiO, as well as of the oxides of vanadium and titanium,
which undergo a thermal transition from an antiferromagnetic insulating state
to a non-magnetic metallic state. Special attention is paid to this magnetic-
to-metallic transition. By calculating the current density and the real di-
electric constant, using second order perturbation theory; it is shown that
the SDW state represents an insulating state below a critical temperature T,.
Above T, the state is metallic or remains insulating depending on whether A
is of the order of U, or small compared to U, Further the critical temper-
ature, the spin susceptibility and the electrical conductivity have been calcul
ated. For reassonable values of the paraﬁetera satisfactory agreement with ex-
perimental data, available for titanium sesquioxide, is obtained.

*  Present address: Scientific Laboratory, Ford Motor Company, Dearborn,

Hichiga.n, UoS.A,
** Submitted to J, Phya.Chem. Solids.
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1. INTRODUCTION
S8ince the introduction of the Helsenberg-Dirac spin Hamile

152 ynto the theory of magnetism in general and the idea

tonian
of superexchange 3 into the theory of antiferromagnetic Insulators
in particular, a wealth of literature has appeared on the origin
of exchange 1n meagnetic materlals. It has been customary to
distinguish between metallic and insulating magnetic substances,
the letter being considered easier to treat. Further, it iz usual
ly assumed that the mechanisms responsible for thelr magnetic

properties are entirely different.

A major advance in the theory of superexchange 1in Iinsulators
vas made recently by Anderson. 4 He introduced the oonecept of
kinetle exchangé, & mechanism completely different from Kramers'
original superexchange. This type of exchange occours in trensi-
tion~metal salts in which the magnetic ions are separated by
dimmagnetlc groups., According to Anderson one should first solve,
8t least in prinoiple, the complex problem of the motion of &
single d-electron in the diamsgnetic lattice, thus eliminating the
interaction with the dlameghetic groups. The interaction between
the rénormalized d~electrons 1s then troated relatively easy. Us~-
ing the Wannier representation, he was able to show that In
gecond order perturbation theory the most important contridution
to the spin dependent interaction between d-electrons on nelghbour
ing magnetic ions comes from a virtual occupation of lonized states.
The two parameters which enter the theory are the transfer integral

b and the Coulomb interaction U between two d=-electrons on the
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same ion. Since d-electron transfer only occurs between neighbours
with antiparaliel spin, the interaction is antiferromagnetic.
Further, since U is usually very rmich larger than b, a permanent og
cupation of ionized states is impossible; thus making these transi-
tion-metal salts insulating. This fact is verified experimentally.
For a further understanding of this theory we refer to the review

4

by Anderson, where also an account of the earlier rather contro

versial literature is given,

There exist however a few highly interesting transition-metal
salts, namely the oxides of vanadium and titanium, which undergo a
thermal transition between a low temperature insulating antiferro-
magnetic state 5 and a non-magnetic metallic state. If the tra¥ngfer
integral b becomes comparable with the correlation energy U, the d-
electrons will begin to wander freely through the crystal. Thus, at
least qualitatively; these oxides are contained in Andersomis
theory. This way of looking at the problem is similar to the
qualitative considerations of Mott on the insulating maghetic state
of transition-metal oxides. 6 Recently Mottts ideas have been

formulated more precisely by Kohn. 7_

A complete quantitative theory of antiferromagnetism should in
our opinion describe simulténeously:
(1) Antiferromagnetism in metals (like Cr).
(11) A thermal transition between an antiferromagnetic
insulating state and a non-magnetic metaliic sgtate

(oxides of V and Ti).



ii1} Antiferromagnetism in insulating transition-metal
oxides,y which remain insulating above the Neel

temperature (like Ni0)},

We attempt in this paper to construct such a theory. For this
purpose we use the 1ldeas recently put forward by Overhauser. 8 We
gtart with a Bloch-band of interacting d-electrons,; whoge degenepr
acy for simplicity is neglected. Overhauser proves that 1n a
gas of interacting electrons a static spin density wave (8DW) 1is
more stable than the non-polarized paramagnetic state. A SIW cor-
responds to a splitting of the band of excltations into two bands
separated by an energy gap 2A. Subsequently we  introduce the
Wannier transformation and keep only the correlation U hetween
electrons on the same ion and the trahsfer integral b hetween
nearest neighboursn The parameters of our theory ars now U,b-and
A,

Overhauser himself applied his theory extensively to Cr metal.
We shows that depending on the relative magnitudes of our  three
parameters one can cover cases (ii) and (iii) as well. In
particular we show that; in cage A\ is large compared to the band
width, Overhauser's state indeed represents an insulating state,
capable of undergoing a thermal transition to a non~-magnetlie

metallic state.

In section 2 Overhauseris theory is reformulated, using the
equation of motion method in second quantization notation. We
show that in Overhauserts state not only the quantities Ry =

+ +
= Crg Opg 384 1=y, = ¢, Oy have finite c=-number average values
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but also the quantity e;-PQl_ckf9 where C;o-is the creation

operator for electrons of momentum k and spinioc. @ 1s the wave
number of the SIW. Overhauserts state thus corresponds to & pair
ing of electrons and holes with opposite spin, with the differ-

ence in their momenta fixed and equal to Q.

In a Hariree-=Fock approximation.the SDW state is lower than
the unpolarized state, because the attractive Coulomb inter=~
action between electrons and holes can overcome the repulsive

interactions hetween electrons and between holes.

We continue to write down a reduced Hamiltoniaml,whieh turns

0

out to be very similar to the well known BCS reduced Hamiltonian.
From there on all the methods used in the theory of superconduct-
ivity can be applied to diagnonalize this reduced Hamiltonian. Ve

will, however, not discuss these methods in detail.

Section 3 is concerned with thermal properties, whereas sec-
tion 4 is devated to electromagnetic properties. Finally, in

gsection 5 a brief comparison with some experimental data 1s made.

2. SDW_GROUND STATE

We start with a Hamiltonian of a system of interacting Bloch

electrons of the form

X = Z Skckocko+% _2 2 <k1k2]V|k3k4>c;; o c§
ko ‘klk2k3k4 oot 1

%% o”°k4a’

(1)

2 3

where €, is the Bloch energy and <k1k2|V|k3k4? are the matrix ele

ments of the interparticle potential. c;o_and ¢,y are creation
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and destruction operators for electrons in Bloch states |ko)> . The

interaction between different Bloch bhands will be neglected.

We now congider the equations of motion for the operators cit

and ci: +Ql’ and linearize these equations by defining the c-numbers
= e +
Z Vi ki 1§ CeraQ) = 2= ik Clor4q) Ok id 2 (2)
. It
with
2 e = o | V] e Q)
The result 1s

EJ, cktil € k1 'Ak°k+Ql, (%a)

and

E{’ °;+QJ= gk+~Q°§+QJ-'Ak°}:T' (3p)

The renormalized ﬁloch energles ’é’k and €k+Q, with ka":(kktlvlkk )
and V¥, =<k+th+Q]VIk+Qk!+Q>, are

=&y Z Kkt Picrd (4a)

and

Eand

€y k+Q k-l-Q - }-_- ¥l 1 nk--!-i-Q-.l ) (4b)

where nk1 and nk+Q1 are the average values of the operators c;Tck,}
and cﬁ"'@lck*‘?l in the ground state. The energies k of the

elementary exclitations are determined from the secular equation

€x ~ % By

which gives

H‘I+

(8 +8k+Q) l: <~k+Q -EJ)Z"'Ai:’% (5)
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Thus the band of excitations is split into two bands separated by
an energy gap ZAko

The corresponding quasi-particle operators Ak and Bk are then
determined as to satisfy the linearized equations (3a,b); i.c.

o4
A = Vit * WcCrag) (6a)

and

where Uy and V) are real. These guasi-particle operators satisfy

fermion commutation rules if u§ + vi = 1, as can easily be verified.

Representing e ang Vi by sinuk and cos vy, respectively, we find on

substituting (6) in {3): 20,
tan 2w = om———s (73

€14q " Fx
The ground state wave function |¢,>s 1.e. the quasi-particle
vacuum, is defined by
A P> =B 16> =0 ,
which leads cne to the trial funetion
- . + +
I8 = TT gl ae = TT(viekt* HcCicag) ) Prac> (®)
k k
Here k runs through all the possible k-values of the first Bri

llouin zone. By calculating the expectation value of the operator
+ . . : .
Craq) Skl 18 this state and substituting the result in (2), we find

the gap equations ~Q
By =2 Vi, sin vy, cosv, (9)
ke

Here £, and & +q? which implicltly enter through vy, are given by
~ 2
€ = & - Viger €087V, (108}
ke

and ~ Q 2
Errg = Epeg - %v . sin“v (10b)
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In order to calculate the ground state energy, we introduce the
reduced Hamiltonian

= + - 1 + +
Hood =2 8ot = 3 2 Vi O %o hrotk i
ko ky,kt,o
S gte et e (11)
- Kkt %ktCk+Q| %k 14Q) %k 1}
k,k!
i q leads to the same equations of motion as (3a,b)s as can easi=-

Te
1y be seen. The ground state energy £ 1s then defined by

$o1%, o519+ We rind

- 2 2 1 2 2
6= 2 € vy *’Zek+q e = 5 2 Viger Vi Vi
K X Kkt

2.2 ~
'%:ng. Y e ':ngr Ye Ve Yer Vi (12)
kekt kykt

Minimizing & with respect to v, and using (7), one obtains again
the gap equatlion (9). Thus (9) really represents the stationarity
condition for the state |$.>.

Up to now we have really done nothing new. The formulas (5),
(7)y (9)y (10a4b) and (12) were already written down by Overhauser,8
who started with electrons moving in a periodiec spin dependent
potential of perilodicity 2m/Q. He then determined this potential
gelf=consistently. Our procedure demonstrates clearly that such a
self-consistent spin density wave corresponds to a coupling of eleg
trons and holes wilth opposite spin and with fixed difference in
their momenta. Overhauser shows furthermore that a SDW state is
more stable than the normal unpolarized Hartree-Fock state, by

comparing the ground state energy & with the energy of the normal
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and 1is » v \» 5 ¥
2[% (8K+Q - B"K) +AKJ

The smallest excltatlon energy for pairs is therefore Zbk. Siw
milarly a state BE'AI;WO), with K # K1, corresponds to a single
particle excitation, the excitation energy being w;%, - “’I-{ . A

typical excited state wave function should therefore be written as

exc> Tr Bk, E A;,,HDO) (15)

Free energy.
We further define the distribution functions
- _ + + g
fig = (hdyd  and £y = BBy
in terms of which the total energy E becomes

B =, g0 E € <2fk veE k>+ 2 Eyuq <ka “ifi;)

"": Xk v ( T + v fk><uk' X +V§:rfk>

K,k
-3~ kar (kak ukfk><vk' frar* ug, -)
koks
!\JQ +
- 2 Vi Uy (f “fk)@kr fk') e Vi (163
Kkt

Considering that the elementary excitations are independent fer-

mions, one has immediately for the entropy

TS = ~ kT S |£i 1n £ + (1 fk>1n 1- fJ L=+ = (17)
o1

Thermodynamic gap.

By defining
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T - +
A(T) Z Ko Sin (133 cos i({ﬂ) (fkw - fk?) 3 (187
as the thermodynamic gap and subsequently minimizing the energy
E with respsct to iT) one gets
2 AT
tan 2 iT) = . (19)
2(T) _3(T)
k+Q Tk
Here 5(T) and aéza are given by
S(g) =8 = kkﬂEkﬂ cos? (}Tﬂ) + f}tw sin® (Ea (20a)
and
ST _ Q - 2 (T) + 2 (T
€piq = 8k4Q==z: Vo [Fr SIS 7+ £ cos® CLTE . (20b)
ko

Further, by minimizing the total free energy with respect to £
and f; and using {18), (19) and (20) one obtains correctly for

the distribution functions 1
£l = (21la)}
expEw;(Tj +1
and 1
al
£y = 5 (21b)

exp&u%m)] + 1

where now

+{)
- = LTy | 2(T)
wk E +8k+Q

1 20T (T (T
ER-ET Y BET) e
Eqs. (187, (19), (20), (21) and (22) determine the self-consisten=

cy equation for the thermodynamic gap. By putting in these equa-

tions the gap equal to zero, one obtains the equation for the
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ecritical temperature.

All these formulas are in principle applicable to metals
(Bloch representation) as well as to insulators (Wannier represepn
tation). We will now go over to the Wannier representation. 1In

this way we make connection with antiferromagnetic salts and oxides.

Narrow d=-band. |

We assume that the band width 1s small compared to the minimum
gap 2A_. This means that |€k|<Ak° Furthermore we introduce the
Wannier representation and keep only the interaction between elec-
trons located on the same magnetic ion. This interaction will be

denoted by Y and is given by 5

_ 2 __° 2

U= ||w(r)|® ———— |w(r)|“ dr ar' , (23)
|z -rt]

where w(r) is the Wannier function at position r. As a consequehce

the gapl&k will be independent of k. We can now make power serles

expansions in terms of ngI/A . Up to second order in ngI/A we

find for the gap equation

200 /2A¢ b &
-m) +<—=—) = o 2 a<«=> ’ (24)
U U U
where 1 .
2 _ ( 2
apc = = - € :-8) o (25)

Here b is the transfer integral for electron transfer from one lon
to another. We keep only transfer to nearest neighbour and have

thus N
b =.J\w (r)?fkin w(r-R)dr , (26)
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where R denotes the position of a nearest neighbouroimkin is the

kinetic energy operator. Further, & ig under these cbnditions

given by .
2 (R4
a =3 sin®|— ], (27)
i 2

where the sum goes over nearest neighbours only. In obtaining
(24) we have assumed that gk 1s approximately given by €, . In the
rest of this paper we shall put gk = Eko

Similarly one finds the equation for the critical temperature

T 3 2 2
¢ 4kBTc 4kBTc 4 b
=)= eme(=] (28)
U U 3 U
where
1
2 _ - z 2
gb - N% <8k+£k+Q+Ekek+Q)’ (29)

Eqs. (24) and (28) are shown in Pig. 1.

From Fig. 1 one seesy first of all, that there is no solution
for values of b and U such that 2a(b/UY¥’) 4/27. Thus for these
values 1t is not possible to maintain a SDW, even at T= 0, For
smaller values of (b/U329 however, there are two solutions with
corresponding transition temperatures. If (b/U) is very small,
kgl is approximately given by b(g/lz)% and U/¢. In order +to
obtain an approximate expression for Tc for intermediate values
of (b/U)° in the lower branch of Fig. 1, we represent equation (28)
by a straight line going through the points (0,0) and (4/27, 2/3).

One obtains for Tc
kg, 2(3/2) g(b/1) (30)

It should be noted that a formula of this type has already been
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obtained by Anderson.4

We lnterpret the lower branch of Fig. 1 as corresponding to an
antiferromagnetic transitlion ¢of the conventional type, such as oc-
curg in Ni10. Throughout the transition the eleetrons remain
localized on their respective sites. This is plausivle, since the
thermal energy per electron is approximately equal to 1%%3(3/2) g(bZ/U),
which is very much smaller than the correlation energy U. On the
other hand the upper branch should corregpond to a transition of
the type occurring in the oxides of V and Ti. Above the transition
from the antiferromagnetic gstate to the unpolarized state the elec~
trons are allowed to wander from one site to another, since now the
thermal energy per electron is comparable to the correlation energy
U. However it is from the outset not clear that hoth solutions
represent insulating states below the transition temperature. In
the next section we shall prove, by directly calculating the
conductivity and the real dielectric constant, that thls is indeed

the case.

Before leaving this sectlon there 1s still one remark to make.
One may wonder, given a certain value of (h/U)Z, which of the two
solutions the system eventually chooses: the one corresponding to
the lower bhranch or that corresponding to the upper branch. By di-
rect computation of the second derivative of the free energy at
T=0 with respect to A one finds that in the upper branch aaF/aAa
1s positive, whereas for the lower branch it 1s negative. This

proves that, at least in our model, the upper solution is more
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stable and the lower only stationary. This situation is also

reflected by the fact that for the lower branch the gap inecreases
with temperature, whereas for the upper branch it decreases atlow
temperature as (U/23[1 -2 exp(~p4A)] and at temperature neai' T,
as 2(33% (kBTc)(l" T/Tc)%, which can easily be verified from (18).
We have here thus alsc the well known fundamental unsolved problem
of the antiferromagnetic ground state. It has been argued that one
can clircumvent these complications by taking anisotropy into ac-

count. In a future investigation we will study the effects of

anisotropy in our model.

4. ELECTROMMGNETIC PROPERTIES

Electrical Conductivity
We shall calculate the imaginary part o"(w) of the conductivity
o{w) = oi(w) + Lo {w)
at temperature zerc in the SODW state. Here w is the frequency of
the applied electric field. In second order perturbation theory
o'"(w) is given by

e im - i 1
01wy = « S n- " T I<alP[0>]2 ( + ) , (31
[ Mmoo Eo(=Eouhw E“mE0+hu)

where P is the total momentum in the direction of the applied field,

10> = [cbo and |o) are excited states i¢exc>

to the matrix elements comes from excited states of the type B;; A;I¢o>,

. The only contribution

which correspond to an energy of excitation E~-E, = wgmw;n From

direct calculation one finds that

1im wo' (W) = —-—-—(—«-—-+—=-—-ab> (32)
W} =3 ZA 4

Here
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Y (ek+Q "Ek>|2 ;

Zﬁlh k
with lk the cosine of the angle between the applied field and Vic*
According to Kohn, 7 an insulating state is defined by

limwom(w) = 0 ,
@) )

which leads us to write (%2) as
2

CINAZIN b

(22 - (2F - -0 3) o
The quantity 7T is approximately the kinetic energy required to form
a SDW state. Further in equilibrium one hag certainly 7T<U. Thus
one sees that (33) is compatible with the stationarity condition
(24).

These consideratlions constitute a gqualitative proof that the
SDW state really represents an insulating state, at least under

the restrictive assumptions we have made.

Dielectric constant
An alternative way to proof that the SDW state represents an
insulating state goes by calculating the real dielectrie constant

€(wy q)y which in perturbation theory is given by 11
2
1 4re 1 1
=1 --—--z |<alpg 10312 + (34)
€(w,q) E,~E,~hw E ~-E +hw

Here the symbols have the gsame meaning as in the case of the

conductivity and
*
quzz:: c;+q0'ckoxj;k+q(xy uk(x) dx z:: °k+qo I(k,q), (35)

k,yo
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where w, (x) is the periodic part of the Bloch functions. Using the
same approximations which led to the conductivity (32), one finds

that
1 'n'ca:2

" I(k )|2( - )Z (36)
S0m) 3 QEEI TOL I C SES 0 L 3

where x, = (1/2) <8k+Q -Ek). This result shows that €(0,q) is
finite and proves ln a far more rigorous way that the SDW state
with our approximations represents an insulating state. We
emphasize that in calculating o" and €(0,q) we have neglected

Umklapp processes.

Spin susceptibility

We will now consider the magnetization of a SIW state in a -
homogeneous magnetic field H in the direction Q. For this purpose
one hags to write down the free energy in the presence of a weak
magnetic field. This can easily be done. All the results of sec-~
tions 2 and 3 remain the same, except that (1/2)[5}(:?_%- Ei({T):[ has to
be replaced by (1/23[5)}(:% &E}({T)]... ME everywhere. The magnetization
M is defined by

M=P§ (nk1 -nk_,_er), (37)

which becomes

M= cos 2 ;T’E»; - f}g : (38)
k
Near T= 0, one finds after some algebra for the susceptibilj

ty x(T)

2 2
M p°N 3 b !
(P == 2 ———— |1=2 (=BA) 1 = = — (39)
x H A(T) [ eXp '3 ]{ s & A(T) 39
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In case AST) remains practically constant with temperature, let us
say up 0 T = le (39) still represents a good approximation for
x(T) up to Ty

For T = Tc one hasﬂz . 1
X(T ) = 1 e —— 5 E + E ) (40)
¢ 2k.T 202 L
BLe BKSTON  k

Neglecting completely the transfer integrals, (39) and (40} imply
that x(0) = x(T_ ). In case the transfer integrals are not zero,
(0) is smaller or larger than x(Tc) depending on the particular

form of Sko

It should be emphasized that the formulas (39) and (40) are
only valid in the upper branch of Fig. 1. It turns out that such
expansions in lEkl/A do not converge rapidly in the lower branch.
Consequently it would be necessary to solve the gap equation ex-

actly.

5. COMPARISON WITH EXPERIMENT

We will now apply briefly the above developed theory to the
case of TiZOS’ where sufficient experimental data are avallable.

The spin susceptibility of T1203 1z is approximately

constant over a wide range of temperatures and rises rather sharp
ly near the critical temperature. Assuming that in this case£§T)
remains approximately constant up to temperatures near Tc, and
then drops rather sharply to zero, the behaviour of the suscepti-

bility is qualitatively reflected by (39) and (40). Whether  the
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susceptiblility rises or falls near Tc’ depends on the particular
form of Ek’ which we do not know in the case of Ti203. From Tc =
= 450°K and AW 2kpT , we find that A% 0.08 eV and x(0) = N;&/A
V2.8 X 10"’6 cgs/gr. Further Ux 2A~ 0.15 eV. Here we have
tacltly assumed that the transfer integrals do not change the
order of magnitude of these values. Experimentally x(0)=0.8 x
X 10"6 cgs/gr. * The agreement is satisfactory, whereas we also

believe that the value for U is reasonable.

The electrical conductivity o' varies for temperatures be-
low the critical temperature exponentially. We make the hypothesis
that one can account for this behaviour by assunming that there are
two types of electrons: superelectrons and current carrying normal
electrons. The number of superelectrons should vary at low temper
atures as 1 = exp(--[BA)o We thus propose that ot can be represent-
ed by

ot = Const. exp(-[PA) . (41)
Comparison with the experimental curve 13 leads to A ® 0.1 aV.
Considering the gross nature of such a model, A is in good agree-
ment with the gap obtained from the susceptibility. Near Tc’ the
conduectivity drops rather sharply. This fact lends additional

A(T) varios only slightly over a

support to our assumption that
wilde range of temperatures. It should be noted that there is a

certain similarity with the "two fluid" model of superconductivi-
ty. However not to much significance should be attached to this

analogy.

* Actually x(T) rises sharply for low temperatures, reportedly due to para~
magnetic impurities. x(0) has been obtained by subtracting this contribu-
tion.
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6. CONCLUSION

The model which we have presented in the proceding sections
is an attempt to put the phenomenon of antiferromagnetism on a
more general basis. It is applicable to metals, like Crj to
insulators, like NiO, and in particular to substances undergoing
an insulator-metal transition, like T1203. We propose to call
substances which show a magnetic~-to-metallic transition superanti
ferromagnets. In the case of insulating antiferromagnets and
superantiferromagnets the model starts with a d-band in which the
electrons are already hybridized with the dlamagnetic groups,
separating the magnetic lons. Thus, it 1is supposed that the crys-
tal field part of the problem has already been treated beforehand.
Then a SDW is postulated and determined self-consistently, leading
to a gap equation. The parameters of our theory are the correla-
tion, U, between two electrons on the same magnetic lon; the
transfer integral, b, for electron transfer from one lon to Its
neasrest neighbours; and the gap A. The agreement with experiment

al data 1s satisfactory.

The model if of course very approximate in that band inter-
action, anisotropy effects and correlation between electrons on
different ions have been neglected. Although we belleve that the
influence of these effeects 1s not seriouns, it would be hecesgsary

to prove this.

Finally we like to emphasize that the superantiferromagnets
are unique systems to study the properties of a dilute gas of

interacting electrons. It would therefore be highly desirable
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to search for other superantiferromagnets and to have more ex-

perimental data available.
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state together with the corresponding eritical temperatures.



