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Abstract

This paper is a continuation of the "Diffractive Dis
sociation in pp-+A++n'p.I—Slope—Mass-CosGG'J'Correlation". We
calculate here the Partial Wave Amplitudes and give the re-

sults obtained for the slope-mass-partial wave correlation.
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I. INTRODUCTION

This paper is a continuation of "Diffractive Dissoci-

ation in pp-+A++ﬂ-p.I-Slope-Mass—CosBG'J'

Correlation", hence
forth called [I]!. Here we proceed to the Partial Wave analy-
sis for the (A**17) system using the helicity amplitudes and
the formalism of [I]. We avoid reproducing the results of [I].
 The missing formulae, expressions and notations can be found
in this previous paper.

The (TCDM) gives a set of properties of the inelastic
diffractive reactions. One of them is the existence of "zeros"
as a consequence of the interference among its components. 1In
some cases? it was possible to derive an equation for the "ze-
ros", which determines exactly the kinematical region where they
are located. But in the present case (pp-+A++n—p) the complica
tions arising from the spin don't allow a simple formula in
which we can visualize analytically the "zeros". These "zeros"
of the amplitude correspond to dips in the cross-sections that
are experimentally observed in the kinematical region of ener-
gy below the threshold of the resonances.

A consequence of these "zeros" in the t2-<ﬁstnumthx5

for the particular intervals of mass the (A 17 system and of

coseG.J.

, is a slope(b)—mass(MA++ﬂ—)-partial wave correla-
tion..
The enhancement of the net slope of a particular wave,

which decreases with increasing energies (sl) of the dissoci-

ated particles, is an evidence of this correlation.
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We examine the interferences among the coamponents of
(rcDM) and the partial waves in which they are stronger. As
we could not obtain an equation to determine the position of
the "zeros" we made in [I] a numerical analysis of the slope-

—mass—cosGG'J'

correlation. In the present paper we also cal-
culate numerically the partial wave distributions and search
for slope-mass-partial wave correlation.

In section I we give the partial wave analysis (PWR)
of the helicity amplitudes obtained in [I] using the results
shown in Appendix A.

We can search for interference mechanisms directly in
the tz—distributions for particular windows of the parameters.
The net slope of each partial wave is a good way of checking
wether the interference mechanism given by (TCDM) works or
not.

In section II the results of the calculations are dis
cussed and some conclusions are presented. In Appendix A we
present the theoretical expansion for the partial waves of the

two-particle final state reaction. This is done in the rest

frame of (1l+2) particles (EI+§2=0)'

1. PARTIAL WAVES FOR pp + A’ 'n p REACTION

We formulate in this section the (PWA) for our reac-
tion, using the helicity amplitudes obtained in paper [I]. For
our purposes, these amplitudes (defined in section IV of [I]

formulae (55), (56), (57), (58)) are rewritten suitable here.
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(8,0) = it () al® cosé + AL3) sin¢}

Aara, (£3/2,21/2) * B(23/2,21/2) (+£3/2,%1/2)

(1)

12i¢{A(1) (2)

(3)
AGar2,010 8 = ¢ T RGy 0,01/0) T B(R3/2,21/29%% * AG3/2,41/2)s1n0)

(2)

(1) a2 3) .
A(’—“1/2,1“'1/2)(e’¢)= {A(+1/2 +1/2) *R(21/2, +1/2)c°s¢'*A(¢1/2,¢1/2)51n¢} 3)

A(11/2,i1/2)(e’¢) - eii(b{A&i/z,ﬂ/z) 83/2 £1/2)C0s¢ + Agi/z’ﬂ/z)smb}
(4)
where

(AE}:;/Z,iIIZ) = i—é{lm1+azlm2+a3lm3} (1a)
8:)3/2 +1/2) T {Im,ra,Img+a,Im,} (2a)

<
2’1‘1/2 s1/2) = % {Img+a,ImgragImy, } (3a)
L &i/z s1/2) = 1 {Im +a,Im;,+a,Im ¢} (4a)
8;/2 '+1/2) = 71_2‘ (b,Im,+b Imy+Im,) (1b)
ﬁ 231)3/2 *1/2) * :}-2" (b,Im,+byIm,+Img) (2b)
gfi/z £1/2) © i (b,Im; g+b,Im,,+Im,,) (3b)
5 A(G1/2,01/2) = 71 (ByImy e byTmy geImy () (4b)
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/ (3) _ __]_-_ '
A(x3/2,21/2) = "5 Re(3/2,21/2)
(3) _ 1 ‘
A(3372,21/2) = i/-i Re'(73/2,:1/2)
| (3)
3 .
Bee1/2,2172) = *ReY(41/2,41/2)
(3) _ .
A(¥1/2,+172) = “Re'31/2,21/2)
\ ,
Re'! = 1 ‘Re
(£3/2,+¥1/2) sing (x3/2,%1/2)
Re', -~ = 1 Re, -
(+3/2,%1/2) sin¢ (+3/2,%1/2)
Re' = 1 Re
(£1/2,%1/2) sing (¥1/2,%1/2)
Re', - = 1 Re , -
(¥1/2,%1/2) sing (F1/2,%1/2)
a, = mg +m§ + [(s)+ m%-—m;)'(s—s
Zs1
+ A;/z(sl,mi,mé) A/
_ 1 ,.1/2 1/2
b2 = -;;—-[A (sl,mi,mé) A
1
a, = s-sl+mi+m;_+m§—a2
by, = -b,

2(s,sl,mi)cosacose]

(1lc)

(2¢c)

(3c)

(4c)

(lc-1)

(2c-1)

(3c-1)

(4c-1)

(s,sl,mg)sina sino]

Let us make some comments on these formulae. We have

separated all helicity amplitudes in three parts, one of them
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which has no dependence on ¢, one multiplied by cos¢ and an-
other by sin¢. This separation for (PWA) make the integration
on ¢ easier to be performed as we can see below.

For each one of the coefficients A§i§ ,1=1,2,3 we make
some important remarks. In order to make the o;servations be-
low easier to be understood, the components of (TCDM) present

in each coefficient are shown in Table (I-1).

. - (1) (2) (1)
(1) The coefficients Ac,y,p +1/2)7 B(1/2,21/2)" B(31/2,21/2)

(2) .
and A(11/2,¢1/2) contain the three components of (TCDM).
Consequently, if there are interferences, they are given

by these coefficients.

(1) (2) (1)
Ais3yz,+1/2)" B(s372,:172) B(33/2,41/2),

(2) .
and A(:3/2't1/2) contain only T and U components. Then,

(ii) The coefficients

we cannot expect strong interferences of (TCDM) type.

s ; o s (3) (3 ;
(iii) The coefficients A(i3/2,t1/2) and A(;3/2,11/2) contain on
ly U components, so we do not expect interferences at all.

(3)

. . . . (3)
(iv) Finally the coefficients A(i1/2,t1/2) and A

(¥1/2,%1/2)
tain U and S components. Then the possible interferences

con

are not expect to be strong ones.
Now we write the amplitudes given by (1), (2),(3) and

(4) in a general way:

—i(ll—xa)¢ A

(6,9) (5)
AA x (6,¢9) = e xlxa
17a

where

R, (8,0) = A{') (8) + a2 (e)coss + A%) (8)sing.  (6)
a 1 a l-a



CBPF-NF-002/84

The integration Qn'¢ which appears in (A-27) can be

done:
m —i(M=-X_)0
a’ v~ _ (1)

do¢ e A}1A (6,¢) = 27 Aklkie) GMA +

o a a
(2) . (3) (2) )
+ "[Aklk (9) + 1A>\ )‘(6)] GM,A _1+1T[A)\ X(e)—lA)\ X (6)]6M,)\ +1
a a a 1l a 1l a a

(7)

Thus we may obtain partial wave amplitudes for each value of
M, as it is usually done in the experimental analysis. As we
want to show that there may happen interferences in the (PWA),
we chose (for simplicity) only the value M::Aa, because this
choice automatically selects the amplitudes in which they are
likely to occur.

The two other possible choices, M::Aéd.and M.=Aa+ 1,

(2), which could also
(3)

would select coefficients of the type A
have strong interferences, but added to A coefficients, what
could destroy these interferences.

From (7) and (A-27), we obtain the partial wave am-

plitudes for well defined total angular momentum J and its pro

jection on the incident beam momentum M::Aa:

I M=R g% " J (1)
Ay 4 = Vn(J+1/2) | sinb de{dA N (0) Ay Y (8) =
1 a o a'l 1l a
J (1)
+ 4 (0)A (6)} (8)
Aafdl —Xl,Xa

which fullfil the relations,
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J, =\, J, A .t
a a

A_ = A (9)
Ayemdg Apera

J, A,z J,A_ %

A, %, =:a § (10)
1'"a 1'"a

For well defined orbital angular momentum L the ampli

tudes are given by (A-30),

J-L-4 L,48,,J
a V' 2341 [Aq] nepiei,y 1'""a

(where A‘II;\MI’,i)\ is given by (8)), satisfying the relation (A-31)
1 a

for which M= )\a gives

J'-‘Aa,t J,Xa,i
A =+ A
(1) ,-1, (L), (11)
. . . . . J-1/2
The parity of these amplitudes is given by P = #(-1) . As

our model must be applied only to a restrict range of the ef-
fective mass of the subsystem (A++n-) . below the first reso-
nance threshold (mA+ mﬂ_<_ /slg mN*) , we expect that in this re-
gion only the first few partial waves contribute significatively
to the subreaction P +p+A+17r—. For convenience we denote the

amplitudes used in our calculations by

J, /2,

=Awyy2

P
A(L J)1/2 (12)

Now using (A-40) we have the following partial wave amplitudes,

one for S-wave, three for P -wave and four amplitudes for D-wave:
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NSSs R A s
L T
siryigs - L I+ A e
(A(DY5)yy = 72 Allﬁ:llﬁl— (1oa)
A(Dy)5)yyy = A;ﬁ'%” - Ai//g: 11%” (15b)
A(DS,,)y, = —/-7?(/6 Agﬁ:l%" +Ai//§:%'") (15¢)
s - L s A T s

Based only on the expressions above we cannot predict
exactly the behaviour of these amplitudes with respect to the
interferences. We know that in all amplitudes (13) to (15) the
terms which give the strong interferences are present. However
there are other terms not trivially added that can give rise to
complicated cancelations so that we cannot have any clear con-
clusion. Thus we made some numerical calculations that we shall
comment in the next section.

The cross-section calculated from the amplitudes (13)
to (15), for each partial wave (L) with well defined |M|=l/2,

an given by (following (A-47) from [I]):
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-9 _
[} 2
doI‘_M ~1/2 (MA'HH") Allz(sl,mi,m;_) , p
—lul=a2 ds ' NG AR PN
2 Jamyee =) 2 1

(16)

II. RESULTS AND CONCLUSIONS

The partial wave do/dt,-distributions for the pp~ A rp
reaction were calculated. This allows us to look for the e-
xistence of a slope-mass-partial wave correlation, as observed
in other cases (e.g. KN?°).

Our results are shown in figures (1) to (6). The set

of parameters used in the calculations is the same as that of

™ _ NN _ NA _ _ -2
Tot> 25(mb), o = 50.(mb) , O:Tot-80 (mb) , B'ITN_ 10(Gev =%),

paper [Il: o Tot

_ -2 - -2 i -
BNN‘ 9.(Gev=“) and BNA' 8.(Gev—“). Two effective mass (MA++TT )

intervals were considered: 1.37 SMA++,"-5_1.40(GeV) and 1.40 <

<M, ++ < 1.45(GeV).

A
M,
(L)}\a

fined total angular momentum (J) of the subsystem (Aw) and its

For the partial wave amplitudes A with well de-
projection in the direction of the incident beam (M), orbital
angular momentum (L) and normality (%), we have restricted the
calculations to the values M= >\a (or |M| =1/ 2).

This restriction has the advantages of simplifying the
calculations and making possible to choose the partial wave
amplitudes in which it is expected that the strong interfer-
ences due to TCDM occur.

The condition IMI =1/2 is enough to verify a possi-

ble slope-mass-partial wave correlation. This assumption was
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corroborated by the results presented here. We hope that these
results will be confirmed experimentally.

Figure 1 shows the three partial wave'(SJ>andI» dis
tributions, obtained directly by (13), (14) and (15). We can
see that there is a strong interference in the S-wave, with a

dip at t. =-0.3(GeV?). The P - wave shows two different behaviours,

2

or two slopes, and the D-wave shows only one slope in the con-

sidered range of t,.

P
J°12

lows us to understand specifically which of them have strong in

wave distribution al-

An examination of each A(L'))
terferences.
Figure (3) shows the P - wave distributions, i.e., the
+ + + .
A(PIIZ)UZ' A(P3[2)U2 and A(PSIZ)UZ given by (l4a), (14b) and
(14c) respectively. Among the P - wave amplitudes, the A(P;ﬂ91/2
is the one that has the strongest interference, with a dip at
t, =-0.13(GeV?).
The relative normalization. in figure (3), shows that

the partial wave A(P{/Z)UZ is two orders of magnitude biger than

+
3/2° V2

son the total P -wave distribution shown in Fig. 1, does

A(P )

where the strongest interference occurs. For this rea
not present the structures of the A(P;/Z)Vz wave.

In Fig. 5 we have the D-wave spectrum for each J,i.e.,
A(D1/2)U2’ A(D3/ZHQ’AiD5/2)U2 and A(D7/2)1/2 waves given by
(15a,b,c and d) equations respectively. We remark that the

7 ; =-0.6 z a
A(D and A(D7/2)1/2 present the dips at t, 0.6(Gev®) an

v2'v2

t, = ~0.3(GeV?) respectively, while no dip is seen in the two other.

But as we can see in Fig. 1, the D-wave has not a special be-

haviour. This fact is easily understood, from Fig. 5, by the
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difference among the absolute values of each particular wave.

Figures 2, 4 and 6 show the same behaviour that ap-
pears in Figs, 1, 3 and 5 respectively, bﬁt for a mass range
farther from the threshold, 1.40 5MA++“— <1.45(GeV).

Summarizing, as we see in Figs. 1 and 2, the P and D
waves do not present dips because all the contributions from
the different values of J are added. These structures appear
in the P-wave only for J=3/2,and in the D-wave for J=1/2 and J=7/2,
but as can be seen in Figs. 3 and 4 and in Figs. 5 and 6, thedips
are covered by the other values of J.

We also calculated the net slopes (b) for each wave.
Table (II-1) shows the values obtained for the interval 0.x.
_5t2§;0.02(GeV2) for two different fanges of invariant mass
MA++“—. Table (IZI-2) shows the slopes for each wave with L and
'J well defined, calculated in the same conditions as those of
Table (II-1). In this Table we remark that all waves but PJ=1/2
-wave present normal mass-slope correlation that is, the slope
decreases with increasing the invariant mass (MA++n_)' This ab
normal behaviour of the PJ =3/2-wave.is because the zero oc-
curs for smaller |t2l when s, increases.

Finally, this set of results shows that the gen
eral interferences predicted by (TCDM) are also maintained in
this particular case, and give a new correlation among partial
waves.

We completed in this paper the calculations started
in [I). We could not include here a comparison with experimen
tal results because, as far as we know, they don't exist. But

the amplitude derived here can be employed in a future analy-

sis of the data.
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APPENDIX A

PARTIAL WAVE EXPANSION (PWE) OF THE SUBSYSTEM (1+2) OF A
GENERIC REACTION a+b -+ (1+2)+3

In the Diffractive Dissociation Reaction where we
have the Pomeron exchanged between b and 3, the helicity am-
plitudes decouple in the helicities of the particles b and 3
and the helicities of the dissociation vertex a~+1+2 (Fig. (Al)).
This fact, due to Pomeron factorization, enables us to write
helicity amplitudes which do not depend on the helicities of

the particles b and 3. These amplitudes are defined by,

Bxagh, (87517800000 = PO, By |AlB, A, By (D)
where p = IEII = |52|, Ea' _ﬁb’ 53, 6 and ¢ are defined in the
Gottfried-Jackson system (Appendix A of [1]).

Our purpose in this Appendix is to develop the sub-
system (l+2) in partial waves, thus the states of interest for
our calculations do not suffer any influence from (bP3) vertex.
The (PWE) of the subsystem (1+2) can be made through the fol-

lowing steps,

i) first we define the state that has the minimal set of the

guantum numbers of the subsystem (142),

2J+1 J
lp 6 o,A 0> = ] 1/—-;1—1;-;9M)\ (6,8,-0) |pIM,A 2>
J,M

(A-2)

where A.:Al—lz is the balance of helicities of the final par-
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ticles 1 and 2 and'éa M;f¢,8,—¢) is the rotation matrix. The

reverse formula is

l’ K

With these expression we write now the amplitudes of total an

gular momentum (J,M) and helicities,

JM

)\1)\2'

> > -»>
A )\;s,sl,tz) = <pJM,)\1>\2;p3|A|pa,)\a;pb> (a-4)

ii) The (PWE) of these helicity amplitudes are written as

\ 2J+1 J* JM
A (S,5,,t,,0,6) = 1} ‘/ 19 7T 4,8,-0) A (s,8, ,t,)
Xlkz,ka 1772 IH an MA XIAZ'Xa 1772
(A-5)

and their reverse expression 1is given by

JM f23+1 J*

172
(A-6)

To define amplitudes with Parity (P) andnormality (%) well

defined, we introduce the corresponding states
1
lp M, A x>,y = — {lpamM,a2,> = N, lpaM, -ay-2>1 (a7

where (le) refers to the normality of the (1+2) system,

61+52—V12

Ny, = nyn,(-1) (A-8)
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UPLPY 4 and 4, are the intrinsic parities and spins of the

particles 1 and 2 respectively, and v,, =0, for J = integer and

12
Vi =1/2 for half integer J. The parities of the states de-~

fined above are given by

P =z (-1) (A-9)

Thus the helicity amplitudes corresponding to these states are

JM,* 1 {AJM JM

A (s,s,,t) = — (s,s,,t,) N, A (s,s,,t,)}
Alxzka 1’72 /3 Alkzka 1772 12 —Al,—kz,ka U ]
(A-10)
Using nowjg Mfk¢,e,-¢)= e_l(M—)‘)q> d;x(e) and from (A-6) and

(A~10) we have

M, _ +1 -i(M-A)¢ - J
A)\l)‘zka(s'slltz) = —8-"» [dﬂ {e dM)x(e) A)\l)\zxa(slslltzleld)) *
-i(M+A
N, e iM+A) ¢ dﬁl_)‘(e) A_)\ll_)\z,)\ (s,s;,t,,8,0)}
a

(A-11)

iii) The parity invariance in strong interactions allows us to
impose restrictions on the number of indepedent A-matrix
elements. In order to obtain these conditions we construct
the 2+ 3 particles helicity amplitudes in overall (CMS).
According to Ref. 4, we construct firstly two particle
states with well defined J, M inthe ((MS). With P, = P ,Z,

the operétor H(p12)=Ro o Zp12 represents a boost in

1O,

z-direction.
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The above’mentioned states are
|P125JP42K1K2>‘= H(plz)lp;Jhd,A1A2> . (A-12)

We note that M is the helicity of the subsystem (1,2) because

3.5
Jz = 12 . As the parity operator P and the Lorentz transfor-
P12
mation operator H(plz) commute, and

J-Al—éz |

we have for the two particle states (A-12)

J-Al—bz
Plp i M, AjA,> = nyn, (-1) Iplz;JbL Xy emhy>
(A-14)
we can therefore construct the states
. _ 1 .
Iy, T M A,> ) = Ji{lplznjm,xlx2>¢
+ lelplthM,vkl,—X2>} (A-15)

A convenient frame for our immediate purposes is obtained choosing

> <> > - . .
pa==pa(eo,¢o) and Py, =Py,2 in the overall (CMS), as is shown
in Fig. A-2. In this particular frame we can define three-par-

ticles helicity states, according to Refs. 4 and 5,

OOhJM(A1*2)1*3>(¢)E |p12nJM,A1A > @l—P3,X3>

Ppgr 27 (%)

(A-16)

we haver§12(6=0,¢#0)==—§3, thus the helicity of these states is
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A::M-—A3.
As discussed in the begining of this Appendix, the
spins of particles (b) and (3) are immaterial for our purposes,
what is equivalent to assume Ab=l3=0, (due to the high energy

conditions).

We can now write the helicity amplitudes, in the ref

erence frame defined by Fig. A2, and whose (PWE) is
<p12,00pJM(AIA2)lAlpa,eo,%;xa>(i)=

v 23+l 63 _ 3
- J)-:(—i—)ﬁmaw”'e"' 90) <Py, I MO A AV D A >

(A-17)

if § (total angular momentum) and jz are conserved quantities.
As the parity is conserved, similarly to the reactions
with two particles in the final states, and remmembering that

M is the helicity of the subsystem (1,2) we have

<912'J'"M(“k1"xz)lAJIPa"Aa>(i)’=”<912“JM(A1'A2)hﬁlpa”h>0ﬂ

(A-18)
where,
J—Aa
and
Al+52-J
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From (A-17) and (A-18) we obtain the following symmetry rela

tion,

<py5r00,3,-M(=A =2} |Alp, /8,0,-2 >,y =

M=)
a
= n(-1) <py,r00,T M(A 1,) |A|pa,e°,o,xa>(t) (A-21)

where the production plane (defined by Ea, Eb and 53)was fixed
as the xz-plane, i.e., ¢D=0. Returning to the Gottfried-Jackson

system, the above relation reads, as we intended to obtain,

J,-M,* M-A I M,
A - _ (s,s,,t ) = n(-1) A (s,s,,t ) (A-22)
—Ar Az, Xa 1772 Alkzka 1772
and also using (A-11) and (A-22),
xl—AZ-Aa
A (s,s,,t,:;6,¢) = n(-1) A (s,s,,t,,8,-0)
~A1,-k2,—ka 1772 klkzxa 1’72

(A-23)

iv) Other relations may be given by the normality of the states

(+). From (A-7) we have,

lp I M, =R s=hy> 4y = % lelpiIM,Xl,l2>(i) (A-24)

which implies the following relations for the amplitudes (A-10),

JM,* IM,*

_xll_xz’xa(s,sl,tz) = i:NIZAKIXZXa(S'Sl'tZ)' (a-25)

A

v) From the relations obtained above we have the helicity am
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plitudes for (DDR), consequently valid for our model, in
the (G.J.S.). Due to Jacob-Wick conventions used here, it
has an explicit phase factor:
~i(A=2 )0
Ak A X (s,sl,t2,6,¢) = e AA XA (s,sl,t2,6,¢)
172 a 1 27a
(A-26)

where A.:Al-xz. With this property the amplitudes (A-11l) can

be written as,

A (s,5,,t,) do e 2 {3-.(e) a (8,¢) *
A A0, 1’2 \/ . J MA AMA A,

J
+
+ NlZdM,

3 (8) A, NED (a-27)

AZ' a

1"

vi) Helicity amplitudes for well defined J, L, N and P of the
(1+2) system.

From the states

JM;L,8> = [Pl ) CLAJ Célj326 [T M;A A > (r-28)
rHrTT (1) 2J+1 A2 oA xl-xzx 71727 ()
12

we define the corresponding amplitudes

IM,t ST L83 8,4,8  JM,%
A(LA)Aa(s’sl'tZ) =|/2 LoCoxn Cal laa By (sispety).

I+l A, 17 %2 172%a
(A-29)
Henceforth we consider only the case Az =0. In such a case,
) 4,05, ,
8=4,, A,=0 and A =A,. Using C -+ =0, and the relation
1 2 1 Alokl
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LAIJ J—L—A'1 LAIJ
CO-—AI,—A1= (-1) Col N and the equation (A-25) we
obtain from (A-29),
JM,* STl J-L-4 L&,J JM,*
A =\ [/~ (1N ,(-1) 1Y) ¢ A (A-30)
WA, Vara 12 1X,| o[ lagl Blagha,

The expressions (A-22) to (A-30) give the relation,

J,-M,t M-X_ JM,i

vii) Partial wave cross-sections

The relations (A-11]) and (A-29) may inverted to give

A (S,S,,t,:6,0) Y ST ¢>){AJM+ (s,s. ,t.)
’ ’ 19, = PR Rl s,S +
Alkzla 1 2 M 8T MAG Xlkzka =172
JM -
+ AA A xa(s'sl’tz)} (A-32)

and

JIMt 2 T+l LAJ 41525 JMi
A (s,s,,t,) = C (s,s,,t,)
Alxzka 1’72 L,A\/2J+l 0AX X -2 x (LA))\a 1772

1
(A-33)
From ortogonality relation for rotation matrices,
J'* 4

we obtain
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JM+ JM-—-

IA + A lz
A kzka Xllzka

L (n-35)
M M1

1
laa|a (6,9)]2 = =
[ ' Al}\Z)\a 2

Using now the completicity relation for Clebsh-Gordan coeffi

cients
] ¢ 1
5L+ 1 oL+l 2 c:L P Jcblbzb CLAJ Cblbzé s 5
; - - - = % t 1
VZJ +1 \/ 23+1 >‘1>‘2 o0AA )\1, >\2,)\ 7.9 )‘1' >\27\ LL' 4%
(A-36)
we have,
z ‘ JM+ - JIM- |2 Z| JM+ J M- P
A +A = A + A, . . (A=37)
Alkz >‘1)\2)\3 X1X2xa L,$ (Lé)ka (Lb)Aa
From (A-35) and (A-37) we obtain,
3 [ael 221 1 Tlane *Aae |’
do|Aa (0,9) = = A + A .
X1x2[ X1X2Xa 2 JM Ls (LA)Aa aA)Aa
The corresponding cross-sections are,
12 2 2
do - e d51 A (S1m1rm2) 1 z 1 z z IA‘EFA‘;)\ + Ai:;)k Iz .
dt2 s, (2Aa+l) Xa 2 JM LS 7 "a a

(A-38)

In our particular case, pp~ (A++1r")p reaction where we have,

51=3/2, 52=0, Aa=l/2, n1=+l, n2=—1, na=+1, u12=1/2 and

consequently le =+1 and n=+1.

The equation (A-30) gives,

IM - IM+ IM- IM+

AL-1-3/20%, = Bei-y2n, T Bearnn,” Aqgeyr =0 39



and,

JM +

A‘(L';_J-3/2)Aé

JM. -

A
(L=J-1/2)Aa

JM+

A .
(L=J+1/2)Aa

AJM-
(L—J+3/2)A
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{A-40a)

(A—40b)

(A-40c)

(A~404d)
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CAPTIONS

do/dt2 distributions for S(——), P(~--=-)and D{(-.-.-)
waves in the effective mass interval 1.37 < MA++“-51.40(GeV).
do/dt, distributions for S(——), P(----), and. D(~-=.- )
waves in the effective mass interval l.40_<_MA++n—5l.45(GeV).
do/dt2 distributions for P(J=1/2)(————), PChﬁ/Z#—_—-)
andﬁP(J=5/2)(—‘—.—) waves in the same effective mass
interval of the Fig. 1.

do/dt2 distributions foriP(J=U2)(————), P(J=3/2)pm___)
and“P(J=5/2)(--a-—) waves in the same effective mass
interval of the Fig. 2.

dg/dt, distributions for D(J=1/2)(——__J;D(J=3/2f'__')’
D(J=5/2)(--—-—) and D(J=7/2)(—..----) waves in the
same effective mass interval of the Fig. 1.

do/dt, distributions for D(J$1/2)(__—'4'D(J=3/2%““L
D(J=5/2)(—~—-—) and D(J=7/2)(—--—..—) waves in the
same effective mass interval of the Fig. 2.

The a+b -+ (1+2)+3 (DDR) factorized by : (i) the Pomeron
exchange or (bP3) vertex and the dissociated subprocess
a~>1+2. The blob in our model is given by the three
components: m-exchange, A++—exchange and p-direct pole.

(CMs) for p_+p, *p,,+P, reaction where |§a|=|§b| and
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Fig. Al
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Table I-1 - Components of (TCDM) present in each of the
coefficients Aili (i=1,2,3).
1l a

A(l) jComponents present in A(.l)
ALA oA
1 a 1 a
)\a= +1/2
- v T U S U STU
ali) 2
1
+3/2| no yes no no.
A +3/2 | no ves no no
+1/2 | no no no yes
¥1/2 | no no no yes
+3/2| no yes no no
A(Z) ¥3/2 | no yes no no
+1/2 | no no no yes
¥1/2 | no no no yes
+3/2 | yes no no no
A(3) ?3/2 yes no no no
+]1/2 | no no yes no
¥1/2 | no no yes no
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Table II.1 - Values of the slopes corresponding to the
curves of dc/dt2 shown in Fig. 1 and 2.

L 1.37<M ++“-_<_l.40(GeV) 1.40<M ++n—5_l.45(GeV)

A A
s | b=19.6(Gev™?) b=17.5(GeV"2)
P | b=11.2(Gev"2) b = 8.8 (GeV_2)

D | b=16.1(GeV ?) b =15.4(GeV™?)
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Table II.2 - Values of the slopes for each wave with
(L) and (J) well defined.

L|3|1.37<My4s —<1.40(GeV) | 1.40 < M4+ - <1.45(GeV)
/2 b=9.9 (GeV™?) b=7.5 (Gev~?)
P 3/2 b=27.2 (Gev“zj b=32.3 (GeV™ ?)
5/2] b =19.9 (GeV™?) b=15.9 (GeV™?)
11/2| b= 16.5 (GeV™?) | b=15.6 (GeV ?)
D [3/2| b =13.6 (GeV™?) b =13.3 (GeV=?)
5/2| b=16.3 (GeV™?) b=11.7 (GeV ?)
7/2| b = 43.9 (GeV ?) b =35.2 (GeV™ ?)




