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ABSTRACT

The role played by the spin of matter in homogeneous Godel-

-type universes is investigated. It is shown that the region of

2

parametrization m 5492 for solutions of Einstein's equations with

fluid and fields (as obtained by Rebougas and Tiomno) can be ex«
tended to m2 >492, in Einstein-Cartan space. Properties of the so

lutions are examined, and comparison with related works is made.

PACS/ 86: 98.80.Dr., 04.40.+c, 04.50.+h, 04.20.3b.



1. INTRODUCTION

In recent years an increasing interest is being focussed onspace
times of the G8del-type.'’? Thgse'spaces have line element written

in cylindrical cocordinates as
ds? = (dt -Hd¢)? -dr? -D?d¢? -dz? , (1)

where D and H are functions of r alone. For homogeneous spaces these

functions must satisfy?
D"/D = m® = -y? ='const , H'/D = 2Q = const ., (2)

a prime meaning d/dr. Although the possibility exists for—« <m?< 4+,
solutions of Einstein's equations in presence of fluids and fields
were obtained? only for m? $40%. The aim of this paper is to find
physical sources for homogeneous Gldel-type sPaées in the region
m? >4 Q%; preliminary and essential results are contained in Ref.[3].

Three nonequivalent classes of homogeneous solutions are possi-
ble for Eqs. {(2),? according to whether'D“/D is a positive (m?),

zero or a negative constant (—uz):

(#) :D= m *sinh(mr) , H = (40/m?)sinh?(mr/2) |, (3)
(0) :D=r , H=Qr? |, (4)
(-) :D=p""sin (ur) , H = (40/1i?)sin® (ur/2) . (5)

It is customary to take the hyperbolic expressions (3) as standard



expressions for the metric coefficients cof homogeneous Gidel-type
universes and say that the second class (algebraic) corresponds
to m=0, while the third class (trigonometric) corresponds to ne-
gative m? (or imaginary m =iy, with ¢ real). In all classes { is
a real number, and represents the uniform angular velocity, or
rotation of the material. Without loss of_generality, the real
constants m in (3) and p.in (5) are both taken as positive.

The prototype of homogeneous universes with rigid rotation is

G8del's cosmos,”

which in our notation corresponds to the: case
m} =207 >0. Gbdel's universe permits a remarkable possibility,
namely the existence of closed timelike curves (not geodesics!});
in other words, it allows for the possibility of an observer to
make a round trip and, under proper acceleration, return to the
starting point at an instant prior to the moment of departure.
Such a violation of causality is made possible essentially be-

cause the ordinarily negative metric coefficient g¢¢(r) assumes

positive values for some range of values of r in the G&del wuni-

2
G

gative only inside the cylindrical region enclosing the 2z axis

verse. Indeed, when m ==29é >0 the coefficient 94e= HZ-D? is ne-
and having radius r, given by sinhz(QGrG//7)=l. The cylindrical
central region r <rGl=1.25/|RG| is called the causal region of
the Gddel universe, ﬁhile the region laying beyond r=rG:u;called
noncausal.

An examination of the occurrence of causal and noncausal re-
gions in the homogeneous G&del-type universes of all three clas-
ses given by Egs. (3)-(5) seems worthwhile.

In the trigonometric class (5) we have g¢¢¢0 whenever 4tan?(ur/2)<

<u?/Q%. A causal region is then the cylindric central region with



radius R given by the minimal positive root of
R = (2/ultan_1(F/l._29-I} ; (6)

such a causal region is surrounded by a noncausal cylindric shell

with thickness
T = 2%v/u - 2R ., (7)

Causal and noncausal cylindric shells with thickness 2R and T re
spectively are next encountered geoing outwards iﬁ -an  alternate
infinite sequence. Novellc and Rebougas® proposed rotating fluids
with anisotropic pressures as possible sources for ‘these universes.
. The models of the algebraic class (4) are simpler to describe:
now g¢¢:=-(1—92r2)r2, so the central cylinder with radius r=|a|”"
is causal while the entire outer space is.noncauSal. A physical
source for this spacetime was discovered by Som and Raychaudhuri,®
who called it "critical”.

Finally, the universe models of the hyperbolic class (3) have
g¢¢‘<0 whenever 2tanh{mr/2} <m/[9!.'Since tanh({x) is bounded to
1 for positive %, two subclasses can be distinguished according
to whether m is less or greater than |2Q|. In the first subclass
(m‘<|29|) the situation is similar to that of the preceding al-
gebraic class: there is a central cylindric causal region with

radius

r, = (2/m)tanh-1(m/l29|) ;, 0<m? <402, {8)

surrounded by the outer noncausal space which extends to the ra-



dial infinity; for Q@ fixed we remark that the radius (8) of the
causal region increases with m, and becomes infinite when1n=|29|.
In the other subclass (m > |20|) the situation is identical to that
of m:=|29|: the entire space is causal in the section t=const.

Rebougas and Tiomno?’ inveatigated the influence of e-
lectromagnetic and massless scalar fields on the width of the
causal region of hyperbolic universes Egs. (1), (3);: they found
that a sourceless electromagnetic field induces a reduction | of
the ratio m/|g|, which implies contraction of the causal region,
_then going to imaginary m's through m=0. On the contrary, the.
sourceless scalar field with uniform gradient added to the rota-
ting fluid contributes to enlarge the_causal region; in' the limit
where only the cosmological constant and the scalar field are pre
sent, then the condition m=[29[ is at most reached and the non-
causal region is exactly excluded, as said before,

Loqking for physical realizations of the situation m? > 402, we
investigated the role played by the spin of matter in the dispo-
sition of causal/noncausal regions in homogeneous G8del-type me-
trics of all three classes Egs. (3)-(5), and hereby report our
findings. To incorporate the spin intc a geometry of spacetime we
took for granted the Einstein-Cartan-Sciama-Kibble theory,’ and
used Hehl's approach.’ In this theory a lagrangean is postulated
which takes into avcount the spin properties of matter and fields
in a twofold way: i) in the spin dependence of the lagrangean of
matter and nongravitational fields themselves; ii) in the form of
the connection Fsv by imposing the existence of an antisymmetric

s

A
tensor part P[UvT

as a torsion term in the covariant derivatives. The variation of

usually interpreted as a torsion as it appears



—5-
r?uv] leads to a relation of it with the spin quantities., For a

Weyssenhoff f£luid with spin density s . and four velocity u*  at

0y

a point this is r?uv]= suv'lk‘

2. WEYSSENHOFF FLUID AS A SOURCE OF GODEL~-TYPE MODELS

In Weyssenhoff?  fluids the antisymmetric spin density Shv
and the fourvelocity uP satisfy suvuv= 0. The dynamics of these
fluids was extensively studied by Halbwachs®, under the special
relativistic lagrangian formalism.

In the general relativity, a lagrangian for spinning fluids

was proposed by Ray and Smalley'’, who found besides the usual
{zero spin) energy-momentum of perfect fluids,
2

Oy = (E+pluu, =P g,

a metrical contribution linear in the spin density,

Lo _

a8+uau6)(sauuv+3avuu):8
Vaidya et allii_obtained solutions for fluids with sourceless e-
lectromagnetic fields under this elegant, purely metrical ap-
proach; while Amorim*? further enriched the fluid by endowing it
with electric charge and magnetic dipole moment.

The Einstein-Cartan’ theory of gravitation is an . attempt
to relate the torsion.suvp of spacetime to the spin density Suv

of the material content. For Weyssenhoff fiuids this relation has

been obtained as Suvp= su'\)up by a large number of authors and in



a variety of methods}®~?! (gsee, however, Refs. 22-25 and the re-
ferences therein contained for alternative descriﬁtions of spin-
ning fluids). |
In the present paper we use the semiclassical model of a
spin fluid, as prescribed by Halbwachs®, Hehl et al?®, Arkuszewski
et al'! and Prasannal'*. Such a model has been widely used in sys
tems with given spacetime symmetries'®”!®, despite an . inconven-
ience it bears?’,
Consider a Weyssenhoff fluid with density p, isotropic pres-—
sure p, four-velocity u® and spin density 848" satisfying uu5a6=0’

the symmetric Einstein-Cartan field equations with 8nG=c=1 are?

U aB u 1 o8 M
G, = (p+p -8 saﬂ)u u, - (p--f 8 SaB’G\)
; af o B " ' H
+ (g " +uu )Va(u sz+uvs B) ' (9)

where GS is the riemannian Einstein tensor and Vu is the rieman-
nian covariant derivative. Also from Ref. 13, the antisymmetric
equations for the Weyssenhoff fluid may be written as
uausva(upsvs-uvsusl + Va(suvua) =0 . (10)
In the same spirit as above, Eq. (10) is the equation of motion for
the spin density suvlin presence of the gravitational field. For
getting the interpretation of the manifeld as a spacetime with me
tric v and torsion F?uv] which lead to Egs. (9), (10), we may
considér Eq. (9) as the'Einstein equation for a riemannian space
with metric guv generated by a source formed by a fluid endowed
with spin which, besides being acted upon by the gravitational

field g, (Eq. (10)), is itself a source of g (Eq. (9)). We



shall analyse the properties of spacetime homogeneous Gidel-type
solutions of these equations in the light of the Raychaudhuri-
-Thakurta, Reboucas-Tiomno classification.®’?

We assume the fluid to be at rest in the standard reference 5Y3
tem of Eqs. (1), (3), so we set uu==dg; we also assume that the
spin is parallel to the z axis (only the component sr¢_survives)
and that it is homogeneous (sr¢sr¢ is constant), so we set

sr¢(r) = 8 D(r) , s = const, (11}

With these assumptions all terms in Eq. (10} are zero, while the

independent field equations in (9) are

G, = 32 =m?2 =p -82 =480 , (12)
GE E -Q%=2_p+s?+280 , (13)
GZ = 0% -m? = up +82 , (14)

where the terms in s arose from Vq(u(usv)a) in Eq. (9).

As already shown in Ref. [3], the equations (12)-{l4) are
still valid for inhomogeneous Gddel-type spaces; then the quan-
tities s, m and O depend on the radius r, submitted to one con-

straint s+{=const.

Returning to the present case of homogeneous spaces, we have

five constants (p,p,s,m,2) satisfvino three relations only;

as only two parameters are independent, we write the solution as

p=p= (R+8)% , m? = 2Q(Q+s) . {15)



One immediately sees from (15) that the density p is non-nega-
tive, and that we are dealing with stiff matter (p=p), as for the
G8del universe with pressure and the cosmological constant A=0.2
One alsc sees that all positive and negative values for m? are pos
sible (-w-<m2‘<4w), the sign of m? depending solely on the value

of the ratio s/Q (thus m? $0 if s/Q g =1).

3. EFFECT OF THE INTRODUCTION OF SPIN WITH FIXED R + s

To get a clear picture of the influence of the spin upon the
metrics we shall compare our system containing spin with a simi-
lar, but spinless system, namely G&del's cosmos. In the spirit
of the present paper, the ingredient of G8del's universe is taken

as spinless stiff matter with uniform rotation QG, satisfying
= =02 2 _ 2
pG...pG..RG ’ (mG..ZQG) . (16)

In a gedanken operation we now impress spin s into the matter
of the G8del universe, with the proviso that the density p of the
fluid is kept unaltered in the process (p=bG). From (15), we see
that necessarily also the pressure p and the combination $L¥S=QG
are held constant in the proéess. The metric parameters 2 and

2

m’ = -p? then depend on the fixed value of 2, and the variable val-

ue of the spin s according to

- - 2__ 2 _ - =
Q..QG s , m°=-q ._2QG(QG s) , ﬂG const . {(17)
For future reference we rewrite the critical radius (8) now in

terms of fixed @, and variable s, for O0<m?<4Q?,



r_ ='|J2/9G|(1-s/nG)“*”coth“1(2-azs/ng)*/‘ . (18)

while the widths 2R and T of the causal and noncausal' regions
Eqs. (6) and (7) are written, now for m? = -u? <0,

2R = [z/zxncl(-1+s/9G)'1/2cot“‘(-2+2s/nG)"2 , (19)

T = [z/z/nci(_1+s/QG)“(2tan“*(-z;ZS/QG)%fz : (20)

where the minimal positive values of the functions cot™ ' and tan”
are to be taken.

The plan of presentation of our results is as follows: we take
c8del's universe and insert spin s initially with the same sign
as the G8del rotation QG' and describe the evolution of the sys-
tem while the ratio S/QG increases from the value zero to +<«. Next
we start again from G8del's solution and introduce spin, but now
with the opposite sign; we describe the system while the  nega-

tive ratio S/QG then changes from zero to -«.

Case s/RG >0

G8del's universe has a central, causal region . with radius
rG°=l‘25|RG|-1‘ Upon insertion of small spin s with s8/Q,>0 the
rotation IQI diminishes, m? >0 decreases (see Eq. (17}), and
the radius r. of the cent;al causal region increases (see:Eq.(18)).

For increasing s/RG:>0 the region of causality is enlarged more
and more, until it becomes infinite when s/QG=l/2, At this stage
the rotation @ has been reduced to QG/2, the half of the initial
value, being equal to s. Also =p==ﬂé. This is the geometrical

system (m? =402) first found by Rebougas and Piomno’ as generated



-.-:;_0—\

by a scalar field in empty space, with cosmological constant A£0.
Here, however, there is a material background with a non-null vor

ticity, while in that case it is not simple to justify that the

G=6(1

vorticity calculated from the field of velocities u 0

repre-
sents a real rotation ¢of the universe.

We proceed increasihg the ratio s/QG:>1/2; thé rotation Iﬂlcpg
tinues to decrease, and the space remains causal in all its ra
dial extent,.

When s/ﬂG:=1 the rotation Q is zero, and we have p=p=s?. As
already remarked by Arkuszewski et al.,” the combinations Pors =
= p~s? and Pogs™ p - s® behave as effective energy density and
effective pressure, respectively. Universes of this type, with
the ingredients p, p, s alone, were studied by Prasanna;“ yhen
both Poff and Porf vanish, the spacetime is Riemann-Christoffel-
-flat. In a sense, Einstein-Cartan models obtained from Einstein
solutions solely with this correspondence are trivial; the models
considered in this paper are nontrivial due to the s terms in
Egqs. (12) and (13). To our knowledge, these are the only nontri-
vial solutions found so far.

We next increase s/ﬂG to a value a little larger than 1; the

rotation 9 is small, and its sign is now opposite to that of s

and Q,. This is a region of transition from the m®> to the u?

case: from (17) we see that m? is negative now, so we prefer to
use u? =20, (s-Q,) and the corresponding trigonometric expressions
(5). The central causal region is a cylinder with a large radius,
R~=ﬂ/[29G(s—RG)]1’z. The cylinder is surrounded by a wuch thin-
ner noncausal region, with thickness T‘=4|QGI'1: going outwards,
successive causal regions with large thickness 2R alternating with

noncausal regions with thickness T are encountered.

With increasing values of s/QG >1 the values of R and T both
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decrease, but R diminishes faster than T; in other words,the pre
dominance of the causal regions over the noncausal ones .dimini-
shes. The rotation [2] is increasing, with @ having sign opposite
to that of the spin s. When s/ﬂG =3/2 the widths 2R and T become
equal (=n/[9G[), while for s/QG >3/2 the noncausal regions predo
minate (T > 2R). As always, the central region is causal.
Finally, for large positive values of s/QG the rotation |Q| al
so becomes large, and § has sign opposite to that of RG and of
large s. The noncausal regions are now thin, T::/Zw/(sﬂGlllz,hut
the causal regions are much thinner, RJ=IS|_1.IThiS completes . the

description of systems with positive ratioc s/RG.

Case s/QG <0

In the same spirit we now return to the spinless G8del universe
with rotation QG' and introduce spin s now with sign opposite to
that of Q.. From (17) one sees that m? is positive for all values
of the negative ratio s/QG, so the hyperbolic expressions (3) for
the metric_coefficients are used; in all circumstances we have a
central causal region with radius r. given by (18), while the
outer space is noncausal and extends to the radial infinity.

When s/0,=0 we have Qdel's. universe, with critical radius =1.25]9,|™;
for QG fixgd and ever decreasing values of the negative ratio
s/QG the radius r. of the single causal regilon shrinks monotoni-
cally. For large values of negative s/Q, it behaves as.[9|“;;|s|-l,
thus coinciding with the radius R of the thin central causal re-
gion encountered when S/RG-++M. Such a coincidence is not acci-
dental: with QG fixed, the geometries of the two limiting cases

s/QG-+tw both tend to one and the same spacetime, the "critical®



solution mentioned by Som and Raychaudhuri.® Here, however, this
solution is produced-in absence of electromagnetic field and the

fluid has spin.

4, EFFECT OF THE INTRODUCTION OF SPIN WITH & FIXED

The remark made at the end of the preceding Section is made clearer
if we study the évolution of the spacetime as we insert spin s
into G83del's universe while keeping invariant the rotation  (in-
stead of keeping unaltered the combination 9~+s:=9G as we have

done so far): with Q = const we rewrite (15) preferably as

pep=R2(14s8/R)% , m?=202(l+s/Q) =-u> , (21)
and now study the variation of p=p and of m? =-u? as functions

of s/Q.

Case s/ <0

We start again from G8del's universe, for which s=0, p =p =?,
m? =202, r_=1.25{2|", and insert spin s initially with sign op-
posite to tﬂat of the rotation @ ; in the process, the value of
the rotation. i will be kept invariant. From Eg. (21), for decreasirng
values of the negative ratio -~1<s/Q <0, the densit} and pressure
(p=p) diminish; also the value of positive m? diminishes. With @
fixed and positive m? decreasing, Eq. (8) says that the central causal

region shrinks along this phase of the process; the region is sur



rounded by an infinite noncausal space.

From Eq. {21), when s/Q reaches the value -1 then m? vanishes,
as in Som-Raychaudhuri® solution;.the radius of the single causal
region is reduced to-lﬁl_l.(see Eq. (8)), and the noncausai:que
still extends to the radial infinity. However, the density and
pressure now vanish, so the spin alonelwould be responsible for
the geometry of spacetime. The possibility of a universe endowed
with spin sclely is somewhat disturbing; it has been proposed a
spinless, electrically charged material as a possible source for
this "critical" spacetime.®

We now arrive to the point we wanted to discuss: the abrupt tran-
sition from the case s/ﬂG==-m to the case s/QG==-i-°° for-ﬂG finite
and fixed. In the present sequence of situations with Q fixed,
it corresponds not te an abrupt, but to a smooth transition from
the case s/Q =~1+8 into the case s/{ = -1-€ (with € small and positive).

This is a region of transition from the m? case to the u? case.
When s/Q=-1-€ the density and pressure in Eq. (21} are
small, o =p =€2Q?%, and the central causal region has radius = (1-e/6) [o|™*
as seen from Eq. (6) with u? =2€/Q%, However, the previously in-
finite noncausal space now has a finite, though large thickness
{Eq. (7)); T}:n(2/6)1’2|9|‘1. Beyond the noncausal region, new
causal regioﬁs =2|R|'l.thick and noncausal regions =4.4/h@h|thidk
now develop in élternation.- _

For completeness, we alsc describe the evolution of the space-
time while s/ decreases ffom -1 to -=. With the rotation  fixed
and the ratio s/8 decreasing from -1 to -« , the density and pres
sure (21) both increase from zero to infinity. The value of u? = —m?
also increases from zero to infinity. The thickness 2R of the

causal regions (6) and T of the noncausal regions {7} both de-

crease, and both tend to zero when s/f +-». However, T decreases
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as fast as [s/ﬁl_l, while 2R decreases simply as Is/ﬂ[-ifz; as a
consequence, the entire space tends to be causal in the limit

S/Q+ -0,

Case s/ >0

With the rotaticen ) finlite and fixed, the transition from the
case s/Q =-» to the case §/Q=+» again seems abrupt, since it de
mands that the spin s changes from an infinite value to the infi
nity of the opposite sign. However, the cases s/Q = t» correspond
to one and the same spacetime, if 6ne assumes that { vanishes in
stead of that s diverges. For vanishing 0 we have p, p and s as
sole physical variables, a problem studied by Prasanna;f“_the uni
verse with =0, p=p=s? is flat, in thé sense that the corre-
sponding Riemann-Christcffel tensor is null. This is easily seen
from Eg. (15): m? vanishes when s is finite and 2 =0; with m and
8 both null, the line element (1), (4) is Minkowskian in cylin-
drical coordinates. Actually the results is trivialn, ag P .=
=peff=52=o; thus this universe is "effectively" empty.

We now describe the system while the ratio s/0 decreases from
+o to 1, with the rotation 0 finste and fiked. The density and
pressure (15) decrease from « to p =p = 40%; the parameter m? (i5)
is positive and 24Q%, so the entire space is causal (see Eq. (8))..

The transition from the case s/f =1 to the case s/Q = 1-€ (with
€ positive and small) is interesting: a noncausal region developes
from the radial infinity until r_=|20]|7"¢n €', The density and
pressure are cont;nudus in the transition.

Finally, when s8/{ changes from 1 to zero, with the rotation @

finite and fixed, the quantities p = p decrease monotonically from



4Q? to Q%. The value of m? is positive, but is less than 402 and
is decreasing; as a consequence, the radius r, of the <central
causal cylinder shrinks to rG:=1.25|Q|'1, the critical radius of
G8del's universe. We have thus returned to the original spinless

situation {(s=0}.

5. FINAL REMARKS

The present paper is a specialization of a previous work of
ours?, valid for inhomogeneous spaces; such a specialization,
with restriction to homogeneous Gédel-type spaces, makes easier
the analysis of the gravitational peculiarities of the intrinsic
spin.

In a recent paper, Bedran et al?® considered a metric similar
to (1), but with grr=.gzz=-G(r) instead of -1; their spacetime
is thus not of the G&del type. In the limiting case of vanishing
pressure and spin they recover van Stockum's?? solution, while
setting G=1 the system becomes of the GO6del type and the equa-
tions of Ref. [3] are reobtained.

Still more recently, Smalley?® applied the self consistent for
mulation!® of the spin fluid to the Gédel cosmology. Differently
from us and from Bedran et al??, however, he inserted the spin
without changing the metric. In the process, he found that the
cosmological constant became slightly more negative, and that
the maacnitude of the angular velocity remained unaltered but the

sense of rotation was flipped 180°.
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